• Title/Summary/Keyword: Candidate Gene

Search Result 808, Processing Time 0.028 seconds

A genome-wide association study of social genetic effects in Landrace pigs

  • Hong, Joon Ki;Jeong, Yong Dae;Cho, Eun Seok;Choi, Tae Jeong;Kim, Yong Min;Cho, Kyu Ho;Lee, Jae Bong;Lim, Hyun Tae;Lee, Deuk Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.6
    • /
    • pp.784-790
    • /
    • 2018
  • Objective: The genetic effects of an individual on the phenotypes of its social partners, such as its pen mates, are known as social genetic effects. This study aims to identify the candidate genes for social (pen-mates') average daily gain (ADG) in pigs by using the genome-wide association approach. Methods: Social ADG (sADG) was the average ADG of unrelated pen-mates (strangers). We used the phenotype data (16,802 records) after correcting for batch (week), sex, pen, number of strangers (1 to 7 pigs) in the pen, full-sib rate (0% to 80%) within pen, and age at the end of the test. A total of 1,041 pigs from Landrace breeds were genotyped using the Illumina PorcineSNP60 v2 BeadChip panel, which comprised 61,565 single nucleotide polymorphism (SNP) markers. After quality control, 909 individuals and 39,837 markers remained for sADG in genome-wide association study. Results: We detected five new SNPs, all on chromosome 6, which have not been associated with social ADG or other growth traits to date. One SNP was inside the prostaglandin $F2{\alpha}$ receptor (PTGFR) gene, another SNP was located 22 kb upstream of gene interferon-induced protein 44 (IFI44), and the last three SNPs were between 161 kb and 191 kb upstream of the EGF latrophilin and seven transmembrane domain-containing protein 1 (ELTD1) gene. PTGFR, IFI44, and ELTD1 were never associated with social interaction and social genetic effects in any of the previous studies. Conclusion: The identification of several genomic regions, and candidate genes associated with social genetic effects reported here, could contribute to a better understanding of the genetic basis of interaction traits for ADG. In conclusion, we suggest that the PTGFR, IFI44, and ELTD1 may be used as a molecular marker for sADG, although their functional effect was not defined yet. Thus, it will be of interest to execute association studies in those genes.

Molecular Cloning and Characterization of Bovine HMGA1 Gene

  • Yu, S.L.;Chung, H.J.;Sang, B.C.;Bhuiyan, M.S.A.;Yoon, D.;Kim, K.S.;Jeon, J.T.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1662-1669
    • /
    • 2007
  • The high mobility group AT-hook1 (HMGA1) proteins are known to be related to the regulation of gene transcription, replication and promotion of metastatic progression in cancer cells. The loss of expression by disrupting the HMGA1 gene affects insulin signaling and causes diabetes in the mouse. Previously identified single nucleotide polymorphism (SNP) of HMGA1 was significantly associated with fat deposition traits in the pig. In this study, we identified 3,935 bp nucleotide sequences from exon 5 to exon 8 of the bovine HMGA1 gene and its mRNA expression was observed by quantitative real-time PCR. Six single nucleotide polymorphisms in the bovine HMGA1 gene were detected and the allele frequencies of these SNPs were investigated using the PCR-RFLP method in nine cattle breeds including Limousin, Simmental, Brown Swiss, Hereford, Angus, Charolais, Hanwoo, Brahman and Red Chittagong cattle. The map location showed that the bovine HMGA1 gene was also closely located with a previously identified meat quality QTL region indicating this gene is the most likely positional candidate for meat quality traits in cattle.

Associations of Polymorphisms in the Mx1 Gene with Immunity Traits in Large WhitexMeishan F2 Offspring

  • Li, X.L.;He, W.L.;Deng, C.Y.;Xiong, Y.Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1651-1654
    • /
    • 2007
  • The mouse myxovirus resistance protein 1 (Mx1) is known to be sufficient to confer resistance to influenza viruses, and the gene encoding Mx1 is, therefore, an interesting candidate gene for disease resistance in farm animals. The porcine Mx1 gene has already been identified and characterized based on its homology with mouse Mx1; the full-length coding region of the pig Mx1 gene spans 2,545 bp (M65087) and is organized into 17 exons compared with the human ortholog mRNA. In this study, the exons 9, 10 and 11 and introns 6 and 9 of the porcine Mx1 gene were cloned and sequenced. Two SNPs were identified in exons 9, 10 and 11 but none of the SNPs led to an amino acid exchange, and the other eleven variants were detected in introns 6 and 9, respectively. Differences in allele frequency between Meishan and other pig breeds were observed within intron 6, of which an $A{\rightarrow}G$ substitution at position 371 was detected as an SnaBI PCR-RFLP. The association analysis using the Large White${\times}$Meishan $F_2$ offspring suggested that the Mx1 genotype was associated with variation in several immunity traits that are of interest in pig breeding. However, further investigations in more populations are needed to confirm the above result.

CaGe: A Web-Based Cancer Gene Annotation System for Cancer Genomics

  • Park, Young-Kyu;Kang, Tae-Wook;Baek, Su-Jin;Kim, Kwon-Il;Kim, Seon-Young;Lee, Do-Heon;Kim, Yong-Sung
    • Genomics & Informatics
    • /
    • v.10 no.1
    • /
    • pp.33-39
    • /
    • 2012
  • High-throughput genomic technologies (HGTs), including next-generation DNA sequencing (NGS), microarray, and serial analysis of gene expression (SAGE), have become effective experimental tools for cancer genomics to identify cancer-associated somatic genomic alterations and genes. The main hurdle in cancer genomics is to identify the real causative mutations or genes out of many candidates from an HGT-based cancer genomic analysis. One useful approach is to refer to known cancer genes and associated information. The list of known cancer genes can be used to determine candidates of cancer driver mutations, while cancer gene-related information, including gene expression, protein-protein interaction, and pathways, can be useful for scoring novel candidates. Some cancer gene or mutation databases exist for this purpose, but few specialized tools exist for an automated analysis of a long gene list from an HGT-based cancer genomic analysis. This report presents a new web-accessible bioinformatic tool, called CaGe, a cancer genome annotation system for the assessment of candidates of cancer genes from HGT-based cancer genomics. The tool provides users with information on cancer-related genes, mutations, pathways, and associated annotations through annotation and browsing functions. With this tool, researchers can classify their candidate genes from cancer genome studies into either previously reported or novel categories of cancer genes and gain insight into underlying carcinogenic mechanisms through a pathway analysis. We show the usefulness of CaGe by assessing its performance in annotating somatic mutations from a published small cell lung cancer study.

Analysis of Disease Progression-Associated Gene Expression Profile in Fibrillin-1 Mutant Mice: New Insight into Molecular Pathogenesis of Marfan Syndrome

  • Kim, Koung Li;Choi, Chanmi;Suh, Wonhee
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.143-148
    • /
    • 2014
  • Marfan syndrome (MFS) is a dominantly inherited connective tissue disorder caused by mutations in the gene encoding fibrillin-1 (FBN1) and is characterized by aortic dilatation and dissection, which is the primary cause of death in untreated MFS patients. However, disease progression-associated changes in gene expression in the aortic lesions of MFS patients remained unknown. Using a mouse model of MFS, FBN1 hypomorphic mouse (mgR/mgR), we characterized the aortic gene expression profiles during the progression of the MFS. Homozygous mgR mice exhibited MFS-like phenotypic features, such as fragmentation of elastic fibers throughout the vessel wall and were graded into mgR1-4 based on the pathological severity in aortic walls. Comparative gene expression profiling of WT and four mgR mice using microarrays revealed that the changes in the transcriptome were a direct reflection of the severity of aortic pathological features. Gene ontology analysis showed that genes related to oxidation/reduction, myofibril assembly, cytoskeleton organization, and cell adhesion were differentially expressed in the mgR mice. Further analysis of differentially expressed genes identified several candidate genes whose known roles were suggestive of their involvement in the progressive destruction of aorta during MFS. This study is the first genome-wide analysis of the aortic gene expression profiles associated with the progression of MFS. Our findings provide valuable information regarding the molecular pathogenesis during MFS progression and contribute to the development of new biomarkers as well as improved therapeutic strategies.

Analysis of C43G mutation in the promoter region of the XIST gene in patients with idiopathic primary ovarian insufficiency

  • Yoon, Sang Ho;Choi, Young Min
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.42 no.2
    • /
    • pp.58-61
    • /
    • 2015
  • Objective: The XIST gene is considered to be an attractive candidate gene for skewed X-chromosome inactivation and a possible cause of primary ovarian insufficiency (POI). The purpose of this study was to investigate whether the XIST gene promoter mutation is associated with idiopathic POI in a sample of the Korean population. Methods: Subjects consisted of 102 idiopathic POI patients and 113 healthy controls with normal menstrual cycles. Patients with the following known causes of POI were excluded in advance: cytogenetic abnormalities, prior chemo- or radiotherapy, or prior bilateral oophorectomy. Genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism analysis. Results: The mean age of onset of ovarian insufficiency was $28.7{\pm}8.5years$ and the mean values of serum luteinizing and follicle-stimulating hormones and estradiol in the POI group were $31.4{\pm}18.2mIU/mL$, $74.5{\pm}41.1mIU/mL$, and $30.5{\pm}36.7pg/mL$, respectively. We found no cytosine to guanine (C43G) variation in the XIST gene in both POI patients and controls. Conclusion: The C43G mutation in the promoter region of the XIST gene was not present in the Korean patients with idiopathic POI in our study, in contrast to our expectation, suggesting that the role of XIST in the pathogenesis of POI is not yet clear.

Association Analysis between SNP Marker in Neuopeptide Y (NPY) Gene and Carcass and Meat Quality Traits in Korean Cattle

  • Chung, Eui-Ryong;Shin, Sung-Chul;Heo, Jae-Pil
    • Food Science of Animal Resources
    • /
    • v.31 no.4
    • /
    • pp.537-542
    • /
    • 2011
  • Biological or physiological genes that regulate metabolism and energy partitioning have the potential to influence economically important traits such as carcass and meat quality traits in beef cattle. The neuropeptide Y (NPY) functions as a central appetite stimulator and plays a major role in feed intake and energy-balance control. Therefore, the NPY gene is an excellent biological and physiological candidate gene for body weight, feeding, fatness or growth related traits in beef cattle. The objective of this study was to identify single nucleotide polymorphisms (SNPs) in the NPY gene and to evaluate the association of NPY SNP markers with carcass and meat quality traits in Korean cattle. The genomic region (711 bp) including intron 2 of NPY gene was amplified and sequenced, and five SNPs, g.4389 Del(C), g.4371Del(C), g.4271T>C, g.1899A>G and g.1517A>C, were identified. The PCR-RFLP method was then developed to genotype the individuals examined. The g.4271T>C SNP was significantly associated with M. Longissimus dori area (LDA) value (p<0.027). Animals with the TT ($78.144{\pm}0.950\;cm^2$) genotype had higher LDA than those with the CC ($72.266{\pm}2.039\;cm^2$), and animals with TC genotype showed intermediate value. This SNP genotype also showed a highly significant additive genetic effect for the LDA (p<0.01). No significant associations, however, was detected between any of the SNP genotype and other carcass traits measured in this study. In conclusion, SNP genotype of the NPY gene may be used as DNA markers to select animals that have a higher meat yield.

Screening of Differentially Expressed Genes among Various TNM Stages of Lung Adenocarcinoma by Genomewide Gene Expression Profile Analysis

  • Liu, Ming;Pan, Hong;Zhang, Feng;Zhang, Yong-Biao;Zhang, Yang;Xia, Han;Zhu, Jing;Fu, Wei-Ling;Zhang, Xiao-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6281-6286
    • /
    • 2013
  • Background: To further investigate the molecular basis of lung cancer development, we utilize a microarray to identify differentially expressed genes associated with various TNM stages of adenocarcinoma, a subtype with increasing incidence in recent years in China. Methods: A 35K oligo gene array, covering about 25,100 genes, was used to screen differentially expressed genes among 90 tumor samples of lung adenocarcinoma in various TNM stages. To verify the gene array data, three genes (Zimp7, GINS2 and NAG-1) were confirmed by real-time RT-PCR in a different set of samples from the gene array. Results: First, we obtained 640 differentially expressed genes in lung adenocarcinomas compared to the surrounding normal lung tissues. Then, from the 640 candidates we identified 10 differentially expressed genes among different TNM stages (Stage I, II and IIIA), of which Zimp7, GINS2 and NAG-1 genes were first reported to be present at a high level in lung adenocarcinoma. The results of qRT-PCR for the three genes were consistent with those from the gene array. Conclusions: We identified 10 candidate genes associated with different TNM stages in lung adenocarcinoma in the Chinese population, which should provide new insights into the molecular basis underlying the development of lung adenocarcinoma and may offer new targets for the diagnosis, therapy and prognosis prediction.

Bcl-2 Gene Expression in Human Breast Cancers in Iran

  • Rostamizadeh, Leila;Fakhrjou, Ashraf;Montazeri, Vahid;Estiar, Mehrdad Asghari;Naghavi-Behzad, Mohammad;Hosseini, Somayyeh;Sakhinia, Masoud;Sakhinia, Ebrahim
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4209-4214
    • /
    • 2013
  • Background: Breast cancer is among the five most common cancers and ranks first among cancers diagnosed in Iranian women. Screening and treatment of this disease with molecular methods, especially regarding high incidences at early age and advanced stage, is essential. Several genes with altered expression have been identified by cDNA microarray studies in breast cancer, with the Bcl-2 gene indicated as a likely candidate. In this study, we studied Bcl-2 gene expression levels in parallel tumor and non-tumor breast tissues. Materials and Methods: Forty samples including 21 tumor, 16 non tumor (marginal) and 3 benign breast tissues which were all pathologically diagnosed, were subjected to RNA extraction and polyA RT-PCR with the expression level of Bcl-2 quantified using real-time PCR. Results: There is higher expression levels of the Bcl-2 gene in tumor samples compared with marginal samples, but not attaining significance(p>0.05). Bcl-2 expression in 14 (66.7%) of the cases of tumor samples and 9 (56.3%) cases of the marginal samples were positive. Comparison of the expression of the Bcl-2 gene in histological grade showed that a high expression of Bcl-2 was associated with a high histological grade (p<0.41). Conclusions: Our data suggests that dysregulated Bcl-2 gene expression is potentially involved in the pathogenesis of breast cancer. Using gene expression analysis may significantly improve our ability for screening cancer patients and will prove a powerful tool in the diagnosis and prognostic evaluation of the disease whilst aiding the cooperative group trials in the Bcl-2 based therapy project.

Identification of a Novel SNP Associated with Meat Quality in C/EBP${\alpha}$ Gene of Korean Cattle

  • Shin, S.C.;Kang, M.J.;Chung, E.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.4
    • /
    • pp.466-470
    • /
    • 2007
  • CCAAT/enhancer binding protein ${\alpha}$($C/EBP{\alpha}$) plays an important role in lipid deposition and adipocyte differentiation. In order to find genetic markers to improve the meat quality of Korean cattle, the bovine $C/EBP{\alpha}$ gene was chosen as a candidate gene to investigate its association with carcass and meat quality traits in Korean cattle. A single nucleotide polymorphism (SNP) was identified at position 271 (A/C substitution) of coding region in the $C/EBP{\alpha}$ gene. A PCR-RFLP procedure with restriction enzyme SmaI was developed for determining the marker genotypes. The frequencies of alleles C and A and were 0.374 and 0.626, respectively. The genotype frequencies for CC, AC and AA were 12.9, 49.0 and 38.1%, respectively, in Korean cattle population. The frequencies of genotype were in agreement with Hardy-Weinberg equilibrium. Association analysis indicated that the gene-specific SNP marker of $C/EBP{\alpha}$ showed a significant association with marbling score (p<0.05). The animals with AA genotype had higher marbling score than those with the AC or CC genotype. Although further studies are needed to validate our results, the $C/EBP{\alpha}$ gene could be useful as a genetic marker for carcass and meat quality traits in Korean cattle.