• 제목/요약/키워드: Candida sp. Mutant

검색결과 4건 처리시간 0.019초

Candida sp. 변이주에 의한 Glutathione 생산 (Production of Glutathione by Candida sp. Mutant)

  • 김대선;유재홍;신원철;윤성식
    • 한국미생물·생명공학회지
    • /
    • 제21권5호
    • /
    • pp.435-439
    • /
    • 1993
  • For the overproduction of glutathione, Candida sp. mutant was isolated by the treatment with U.V. light. The highest glutathione production of Candida sp. mutant was obtained after shaking culture for 48 hours in the cullture medium containing glucose 1.5%(w/v), yeast extract 4.0% (w/v), KH2PO4 0.04%(w/v), biotin 5 ng/ml, and L-cysteine 0.04%(w/v). The optimal pH and temperature for the glutathione production were pH 6.0 and 25C, respectively.

  • PDF

Candida sp.의 Catabolite Derepressed Mutant에 의한 Xylitol 생산 (Production of Xylitol by Catabolite Derepressed Mutant of Candida sp.)

  • 한완옥;서진호;유연우
    • KSBB Journal
    • /
    • 제13권1호
    • /
    • pp.6-12
    • /
    • 1998
  • In order to produce xylitol from hemicellulose hydrolysate which is widely used as a substrate, the development of strain such as catabolite derepressed mutant is required. After treatment of Candida sp. with EMS, GM-17 and PM-34 as catabolite derepressed mutant were isolated from Candida guilliermondii and Candida parapsilosis, respectively. Mutant GM-17 and PM-34 simultaneously assimilated xylose and glucose during the fermentation. The specific xylose reductase and xylitol dehydrogenase activities of mutant strains were also higher than those of wild strains in glucose medium and mixed medium of glucose and xylose. The xylitol productivity and yield of mutant GM-17 and PM-34 were improved as compared to the wild types in the mixed medium. The xylitol productivity and yield of mutant GM-17 were 0.09 g/L·hr and 0.56 g-xylitol/g-xylose, and those of mutant PM-34 were 0.21 g/L·hr and 0.52 g-xylitol/g-xylose in the mixed medium, respectively.

  • PDF

Xylanase 분비효모와 Xylose 발효효모의 Protoplast Fusion (Cell Fusion Between Xylose Fermenting Yeast and Xylanase Secreting Yeast)

  • 김남순;배명애;서정훈
    • 한국미생물·생명공학회지
    • /
    • 제17권2호
    • /
    • pp.88-93
    • /
    • 1989
  • Xylan성 biomass로부터 직접 alcohol을 얻고자 xylose 발효효모 X-6-41 균주의 NTG mutant인 X-6-41-1(his-) 균주와 xylanase 분비효모인 XB-33 의 NTG mutant XB-33-37(Arg-) 균주를 세포융합 시켰다. 원형질체 생성조건은 KYPX(XB-33), KYPD(X-6-41)에서 대수증식기 말기까지 증식한 세포를 집균하여 zymolyase(0.25mg/$m\ell$), cellulase (4mg/$m\ell$)와 100mM 2-mercaptoethanol 처리시 protoplast화 율은 X-6-41 경우 80%, XB-33인 45%로 나타났다. 선별된 융합체의 탄소자화능은 parent의 자화능을 서로 보완하였음을 확인하였고 xylan에서의 alcohol 발효는 2% xylan에서 발효 15 일만에 총당에 대해 0.28% alcohol 농도를 나타내었다. Parent와 fusant의 xylanase 활성은 완전배지 보다 최소배지상에서 높았는데 이것은 xylose 발효효모(X-6-41)의 경우 isoleucine에 의한 xylanase production inhibition 효과와 일치하였다.

  • PDF

구강상재균을 중심으로 항균력을 나타내는 메탄올 자화방선균의 분리 및 변이주 생산 (Isolation of Methylotrophic Actionmycetes Capable of Producing Antagonistic Activity Against Oral Resident Bacteria and Screening of Mutants)

  • 박명호;이화식;배봉진;김정
    • 대한치과기공학회지
    • /
    • 제22권1호
    • /
    • pp.145-152
    • /
    • 2000
  • In order to select an effective antibiotic substance against oral resident bacteria, we were isolated from soil and texonomically analyzed. Seven hundred and eighteen strains were isolated on humic acid- vitamin agar(HV agar) and 220 strains were on methanol medium from three each paddy forest, field and riverside soil samples. So, during the screening of antibiotics from soil, we isolated microorganisms showing powerful antagonistic activity against oral resident bacteria. Microorganism was tested against 25 strains of bacteria, yeast and fungi. Among them, No. 248 strain exhibited the most strongly growth inhibition. So, the taxonomical analysis the isolated strain was found to be unknown Actinomyces sp. and was named No 248. A production of the antibiotics from No. 248 begins at the early exponential phase developed at the 72th hour under the optinum conditions. The property of No. 248 antimicrobial compound was very stable under acid(pH 3.0) and alkali(pH 10.0) treatment, but it was instable in heat treatment at $120^{\circ}C$. For the improvement of antibiotic activity, two mutants were isolated from strain No. 248 by the treatment of mutagenic agents, NTG and hydroxylamine. As a result, the mutant strains excreted the potent antibiotics to inhibit the growth of Candida albicans.

  • PDF