• Title/Summary/Keyword: Cancer stem cells

Search Result 333, Processing Time 0.024 seconds

Cytotoxicity of Particulate Matter in Various Human Cells Lines (미세먼지가 다양한 사람 세포주에 미치는 세포 독성)

  • Lee, Ji-Hyeon;Lee, Joo-Yeong;Kim, Mi-Jeong;Kim, Hyeon-Ji;Lee, Sung-Ho;Jeon, Byeong-Gyun
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.724-734
    • /
    • 2019
  • The present study investigated the cytotoxicity of particulate matter (PM) derived from car air filter (outdoor PM) and home cleaner filter (indoor PM) in the various human cell lines. Each outdoor and indoor PM were harvested by ethanol extraction method, subsequently sieved with 10 um filter paper, sterilized with autoclave and added to culture media. The half maximal inhibitory concentration ($IC_{50}$) values was significantly (p<0.05) lower in the outdoor PM, compared with indoor PM, and the significantly (p<0.05) higher $IC_{50}$ values were observed in the cancer cell lines (A-549 lung adenocarcinoma and AGS stomach adenocarcinoma), than those of normal MRC-5 fibroblasts and dental papilla tissue derived-mesenchymal stem cells (DSC). After being exposed to $100{\mu}g/ml$ outdoor PM for 7 days, the population doubling time (PDT) was significantly (p<0.05) increased in especially MRC-5 and DSC cell lines, compared with untreated cell lines. Further, the expression of senescence-associated ${\beta}$-galactosidase activity was up-regulated in all the cells exposed to outdoor PM than those of untreated control. Besides, the expression level of inflammation-associated genes, such as cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6) was found to be significantly (p<0.05) increased in the outdoor PM-treated cell lines than those of untreated cell lines. Our results showed that PM induces the cytotoxicity via arrest of cell growth, cell damage and inflammation response.

In vivo Radioprotective Effects of Basic Fibroblast Growth Factor in C3H Mice (Basic Fibroblast Growth Factor (bFGF)의 방사선보호작용에 대한 실험적 연구)

  • Kim, Yeon-Shil;Yoon, Sei-Chul
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.253-263
    • /
    • 2002
  • Purpose : In order to understand in vivo radiation damage modifying of bFGF on jejunal mucosa, bone marrow and the effect of bFGF on the growth of transplanted mouse sarcoma 180 tumor in mice. Materials and Methods : Mice were treated with $6\;{\mu}g$ of bFGF at 24 hours and 4 hours before exposing to 600 cGy, 800 cGy and 1,000 cGy total body irradiation (TBI), and then exposed to 3,000 cGy local radiation therapy on the tumor bearing thigh. Survival and tumor growth curve were plotted in radiation alone group and combined group of bFGF and irradiation (RT). Histologic examination was performed in another experimental group. Experimental groups consisted of normal control, tumor control, RT (radiation therapy) alone, $6\;{\mu}g$ bFGF alone, combined group of $3\;{\mu}g$ bFGF and irradiation (RT), combined group of $6\;{\mu}g$ bFGF and irradiation (RT). Histologic examination was peformed with H-E staining in marrow, jejunal mucosa, lung and sarcoma 180 bearing tumor. Radiation induced apoptosis was determined in each group with the DNA terminal transferase nick-end labeling method ($ApopTag^{\circledR}$ S7100-kit, Intergen Co.) Results : The results were as follows 1) $6\;{\mu}g$ bFGF given before TBI significantly improved the survival of lethally irradiated mice. bFGF would protect against lethal bone marrow syndrome. 2) $6\;{\mu}g$ bFGF treated group showed a significant higher crypt depth and microvilli length than RT alone group (p<0.05). 3) The bone marrow of bFGF treated group showed less hypocellularity than radiation alone group on day 7 and 14 after TBI (p<0.05), and this protective effect was more evident in $6\;{\mu}g$ bFGF treated group than that of $3\;{\mu}g$ bFGF treated group. 4) bFGF protected against early radiation induced apoptosis in intestinal crypt cell but might have had no antiapoptotic effect in bone marrow stem cell and pulmonary endothelial cells. 5) There was no significant differences in tumor growth rate between tumor control and bFGF alone groups (p>0.05). 6) There were no significant differences in histopathologic findings of lung and mouse sarcoma 180 tumor between radiation alone group and bFGF treated group. Conclusions : Our results suggest that bFGF protects small bowel and bone marrow from acute radiation damage without promoting the inoculated tumor growth in C3H mice. Improved recovery of early responding normal tissue and reduced number of radiation induced apoptosis may be possible mechanism of radioprotective effect of bFGF.

Anti-Inflammmatiry Effects of Nerium indicum Ethanol Extracts through Suppression of NF-kappaB Activation (NF-κB 활성 저해를 통한 협죽도 에탄올 추출물의 항염증 효능)

  • Kim, Tae-Hwan;Ko, Seog-Soon;Park, Cheol;Park, Sang-Eun;Hong, Sang-Hoon;Kim, Byung-Woo;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1221-1229
    • /
    • 2010
  • Nerium indicum, an India-Pakistan-originated shrub belonging to the oleander family, is reported to possess many pharmacological activities including cardiac muscle stimulation, and anti-diabetes, anti-angiogenesis, anti-cancer and neuro-protective activities. However, the anti-inflammatory properties of N. indicum were unclear. In this study, we investigated the effects of ethanol extract of the N. indicum leaf and stem (ENIL and ENIS) on the expression of anti-inflammatory mediators in U937 human pre-monocytic cell models. In U937 cells stimulated with phorbol 12-myristate-13-acetate (PMA), pre-treatment with ENIS significantly inhibited the expression of both cyclooxygenase-2 (COX-2) mRNA and protein, which are associated with inhibition of the release of prostaglandin $E_2\;(PGE_2)$, whereas the inhibitory effects appeared weakly in ENIL. Moreover, ENIS significantly attenuated PMA-induced IkappaB ($I{\kappa}B$) degradation and suppressed elevated nuclear factor kappa B (NF-${\kappa}B$) nuclear translocation. Taken together, these findings provide important new insights that N. indicum exhibits anti-inflammatory properties by suppressing the transcription of pro-inflammatory cytokine genes through the NF-kB signaling pathway.