Journal of the Korean Data and Information Science Society
/
v.23
no.4
/
pp.677-682
/
2012
There are lots of sampling design which is determined for sample survey in various fields. Especially, it is important problem for clinical data because basic characteristic variables by group which consist of experiment group and control group in population should be reflect to sample. Therefore, frequencies, center scales and dispersion scales of variables by group in population should be similar in sample. But usual sampling design is very complicate so it is difficult to use in practice for researcher. In this paper, we consider the sampling method using simulation. We applied the proposed method to colon cancer data from a hospital. We compare basic characteristic variables between population and sample with mean, frequency and statistic hypothesis test.
Na, Ye Ji;Ho, Jong Gab;Lee, Sang Joon;Min, Se Dong
KIPS Transactions on Software and Data Engineering
/
v.5
no.6
/
pp.267-272
/
2016
Microscope cell image is an important indicator for obtaining the biological information in a bio-informatics fields. Since human observers have been examining the cell image with microscope, a lot of time and high concentration are required to analyze cell images. Furthermore, It is difficult for the human eye to quantify objectively features in cell images. In this study, we developed HCS algorithm for automatic analysis of cell image using an OpenCV library. HCS algorithm contains the cell image preprocessing, cell counting, cell cycle and mitotic index analysis algorithm. We used human cancer cell (MKN-28) obtained by the confocal laser microscope for image analysis. We compare the value of cell counting to imageJ and to a professional observer to evaluate our algorithm performance. The experimental results showed that the average accuracy of our algorithm is 99.7%.
Objectives : This study aimed to understand the characteristics of the cases covered in the case studies on traditional Korean medicine (TKM) and furthermore, to provide basic information that can lead the discussion on 'what cases are worth reporting' in future case reports. Methods : Case reports on TKM were searched using the OASIS. The searched researches were analyzed according to the type of case, including information on disease/symptoms and intervention. Results : A total of 940 researches were searched. The most frequently reported type of case study was the report on the effectiveness of intervention. Case reports, which were only two cases in the 1970s, increased rapidly in the 2000s, and in particular, 314 cases within the last five years accounted for about 33% of the total literature. As for the number of studies by disease, the cases dealing with musculoskeletal diseases such as spine, shoulder and knee joint disorders were the most prevalent. Besides, there were many case reports related to cardiovascular, gynecological, cancer, psychiatric, and dermatological diseases. In a total of 51.9% of the included case reports, a combination of two or more Korean medical treatments such as acupuncture and herbal medicine was used at once, and western treatment was used with Korean medical treatment in 28.2% of the studies. The types of Korean medical treatments were varied, such as acupuncture, moxibustion, pharmacopuncture, electroacupuncture, Chuna, acupotomy, herbal medicine, external preparation, and psychotherapy. The main purpose of the publication of the included case reports was analyzed as a report of TKM treatment for rare diseases, or the application of TKM treatment to diseases or symptoms that are "uncommon in TKM treatment" even if it is not a rare disease. Conclusions : Case reports have the strength of generating new scientific hypotheses by detecting the basic needs and novelty of medicine. The current case studies of TKM do not seem to be sufficient to highlight these strengths. It is necessary to discuss which cases are reported as cases of patients worth publishing, and based on this, it is necessary to activate case studies of TKM by utilizing diagnostic tools and science technology.
Journal of the Korea Institute of Information and Communication Engineering
/
v.11
no.10
/
pp.1924-1929
/
2007
Nowadays, a lot of related data obtained from these research could be given a new present meaning to accomplish the original purpose of the whole research as a human project. The method of tumor classification based on microarray could contribute to being accurate tumor classification by finding differently expressing gene pattern statistically according to a tumor type. Therefore, the process to select a closely related informative gene with a particular tumor classification to classify tumor using present microarray technology with effect is essential. In this thesis, we used cDNA microarrays of 3840 genes obtained from neuronal differentiation experiment of cortical stem cells on white mouse with cancer, constructed accurate tumor classification model by extracting informative gene list through normalization separately and then did performance estimation by analyzing and comparing each of the experiment results. Result classifying Multi-Perceptron classifier for selected genes using Pearson correlation coefficient represented the accuracy of 95.6%.
Journal of the Korea Institute of Information and Communication Engineering
/
v.12
no.7
/
pp.1243-1248
/
2008
As development in technology of bioinformatics recently mates it possible to operate micro-level experiments, we can observe the expression pattern of total genome through on chip and analyze the interactions of thousands of genes at the same time. In this thesis, we used CDNA microarrays of 3840 genes obtained from neuronal differentiation experiment of cortical stem cells on white mouse with cancer. It analyzed and compared performance of each of the experiment result using existing DT, NB, SVM and multi-perceptron neural network classifier combined the similar scale combination method after constructing class classification model by extracting significant gene list with a similar scale combination method proposed in this paper through normalization. Result classifying in Multi-Perceptron neural network classifier for selected 200 genes using combination of PC(Pearson correlation coefficient) and ED(Euclidean distance coefficient) represented the accuracy of 98.84%, which show that it improve classification performance than case to experiment using other classifier.
Journal of the Korea Institute of Information and Communication Engineering
/
v.11
no.10
/
pp.1992-1998
/
2007
It is important to obtain conn cytodiagnosis to classify background, cytoplasm, and nucleus from the diagnostic image. This study mose an algorithm that detects and classifies carcinoma cells of the uterine cervix in Pap smear using features of cervical cancer. It applies Median filter and Gaussian filter to get noise-removed nucleus area and also applies Kapur method in binarization of the resultant image. We apply 8-directional contour tracking algorithm and stretching technique to identify and revise clustered cells that often hinder to obtain correct analysis. The resulted nucleus area has distinguishable features such as cell size, integration rate, and directional coefficient from normal cells so that we can detect and classify carcinoma cells successfully. The experiment results show that the performance of the algorithm is competitive with human expert.
International journal of advanced smart convergence
/
v.8
no.1
/
pp.24-34
/
2019
In this research, a practical deep learning framework to differentiate the lesions and nodules in breast acquired with ultrasound imaging has been proposed. 7408 ultrasound breast images of 5151 patient cases were collected. All cases were biopsy proven and lesions were semi-automatically segmented. To compensate for the shift caused in the segmentation, the boundaries of each lesion were drawn using Fully Convolutional Networks(FCN) segmentation method based on the radiologist's specified point. The data set consists of 4254 benign and 3154 malignant lesions. In 7408 ultrasound breast images, the number of training images is 6579, and the number of test images is 829. The margin between the boundary of each lesion and the boundary of the image itself varied for training image augmentation. The training images were augmented by varying the margin between the boundary of each lesion and the boundary of the image itself. The images were processed through histogram equalization, image cropping, and margin augmentation. The networks trained on the data with augmentation and the data without augmentation all had AUC over 0.95. The network exhibited about 90% accuracy, 0.86 sensitivity and 0.95 specificity. Although the proposed framework still requires to point to the location of the target ROI with the help of radiologists, the result of the suggested framework showed promising results. It supports human radiologist to give successful performance and helps to create a fluent diagnostic workflow that meets the fundamental purpose of CADx.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.05a
/
pp.816-818
/
2014
Gas target chamber has been developed for producing $^{123}I$ which is radiopharmaceuticals for diagnosis of thyroid cancer, and modeled how to occur nuclear reaction between chamber and $^{124}Xe$ with energy 30MeV inside the gas target chamber by using the MCNPX. The beam energy was lost as the beam spread when beam hit inside the gas target chamber. The cooling water was used not to change the gas target chamber as loss of energy transfer to the thermal energy. Spiral cooling line was designed for cooling the target chamber efficiently. By using the c30 cyclotron, $^{124}Xe(p,2n)$, $^{124}Xe(p,n)$, $^{124}Xe(p,pn)$ nuclear reactions were studied. In this study, we predict the production yield.
Journal of the Korean Society for information Management
/
v.36
no.1
/
pp.117-135
/
2019
Data journals and data papers have grown and considered an important scholarly practice in the paradigm of open science in the context of data sharing and data reuse. This study investigates a total of 713 data papers published in Scientific Data in terms of author, citation, and subject areas. The findings of the study show that the subject areas of core authors are found as the areas of Biotechnology and Physics. An average number of co-authors is 12 and the patterns of co-authorship are recognized as several closed sub-networks. In terms of citation status, the subject areas of cited publications are highly similar to the areas of data paper authors. However, the citation analysis indicates that there are considerable citations on the journals specialized on methodology. The network with authors' keywords identifies more detailed areas such as marine ecology, cancer, genome, database, and temperature. This result indicates that biology oriented-subjects are primary areas in the journal although Scientific Data is categorized in multidisciplinary science in Web of Science database.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.9
/
pp.1144-1149
/
2020
The magnetic valve of the breast tissue expander generates imaging artifacts during MRI examination, so MRI examination is limited. To evaluate the effect of imaging artifacts on the diagnosis area for patients with breast tissue expander who need MRI examination. Imaging artifacts were measured using self-made phantoms and actual clinical conditions. Imaging artifacts were measured differently depending on the environment of 1.5 Tesla and 3.0 Tesla, and the effects of imaging artifacts were less in the C-spine and L-spine tests. If MRI due to breast cancer metastasis is absolutely necessary, head & neck examination and L-spine can be examined mainly at 1.5 Tesla, but some sequences may cause distortion due to image artifacts. In terms of safety, MRI scans of patients with breast tissue expanders can be performed conditionally at 1.5T, avoiding 3.0T.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.