• Title/Summary/Keyword: Cancer imaging

Search Result 1,199, Processing Time 0.025 seconds

Molecular Imaging Using Sodium Iodide Symporter (NIS) (Sodium Iodide Symporter (NIS)를 이용한 분자영상)

  • Cho, Je-Yoel
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.152-160
    • /
    • 2004
  • Radioiodide uptake in thyroid follicular epithelial cells, mediated by a plasma membrane transporter, sodium iodide symporter (NIS), provides a first step mechanism for thyroid cancer detection by radioiodide injection and effective radioiodide treatment for patients with invasive, recurrent, and/or metastatic thyroid cancers after total thyroidectomy. NIS gene transfer to tumor cells may significantly and specifically enhance internal radioactive accumulation of tumors following radioiodide administration, and result in better tumor control. NIS gene transfers have been successfully performed in a variety of tumor animal models by either plasmid-mediated transfection or virus (adenovirus or retrovirus)-mediated gene delivery. These animal models include nude mice xenografted with human melanoma, glioma, breast cancer or prostate cancer, rats with subcutaneous thyroid tumor implantation, as well as the rat intracranial glioma model. In these animal models, non-invasive imaging of in vivo tumors by gamma camera scintigraphy after radioiodide or technetium injection has been performed successfully, suggesting that the NIS can serve as an imaging reporter gene for gene therapy trials. In addition, the tumor killing effects of I-131, ReO4-188 and At-211 after NIS gene transfer have been demonstrated in in vitro clonogenic assays and in vivo radioiodide therapy studies, suggesting that NIS gene can also serve as a therapeutic agent when combined with radioiodide injection. Better NIS-mediated imaging and tumor treatment by radioiodide requires a more efficient and specific system of gene delivery with better retention of radioiodide in tumor. Results thus far are, however, promising, and suggest that NIS gene transfer followed by radioiodide treatment will allow non-invasive in vivo imaging to assess the outcome of gene therapy and provide a therapeutic strategy for a variety of human diseases.

Review of Photoacoustic Imaging for Imaging-Guided Spinal Surgery

  • Han, Seung Hee
    • Neurospine
    • /
    • v.15 no.4
    • /
    • pp.306-322
    • /
    • 2018
  • This review introduces the current technique of photoacoustic imaging as it is applied in imaging-guided surgery (IGS), which provides the surgeon with image visualization and analysis capabilities during surgery. Numerous imaging techniques have been developed to help surgeons perform complex operations more safely and quickly. Although surgeons typically use these kinds of images to visualize targets hidden by bone and other tissues, it is nonetheless more difficult to perform surgery with static reference images (e.g., computed tomography scans and magnetic resonance images) of internal structures. Photoacoustic imaging could enable real-time visualization of regions of interest during surgery. Several researchers have shown that photoacoustic imaging has potential for the noninvasive diagnosis of various types of tissues, including bone. Previous studies of the surgical application of photoacoustic imaging have focused on cancer surgery, but photoacoustic imaging has also recently attracted interest for spinal surgery, because it could be useful for avoiding pedicle breaches and for choosing an appropriate starting point before drilling or pedicle probe insertion. This review describes the current instruments and clinical applications of photoacoustic imaging. Its primary objective is to provide a comprehensive overview of photoacoustic IGS in spinal surgery.

Multifocal nodular lymphoid hyperplasia of the lung

  • Lee, Gil Tae;Kim, Eun Kyoung;Cho, Eirie;Lee, Seung-Sook;Kim, Seo Yun;Kim, Cheol Hyeon;Kim, Hye-Ryoun
    • Journal of Yeungnam Medical Science
    • /
    • v.34 no.1
    • /
    • pp.84-87
    • /
    • 2017
  • Nodular lymphoid hyperplasia (NLH) is a benign lymphoproliferative disease that can affect the lung. Because of its rarity, little is known about the etiology and natural history of NLH. Most cases are usually asymptomatic and found incidentally on imaging studies. Imaging finding of NLH has shown most commonly as a solitary lesion, although multifocal pulmonary nodules may be seen. Surgical resection has proved curative in the cases previously described. We report a rare case of NLH in a 55 year-old man who presented with bilateral multiple pulmonary nodules on chest radiography. Open biopsy was performed from the upper and lower lobe of the left lung. The lesions were pathologically diagnosed as pulmonary NLH. Multifocal residual nodules in both lungs remain stable without spontaneous regression during the 3 years of follow-up.

Review of Neurosurgical Fluorescence Imaging Systems for Clinical Application

  • Kim, Hong Rae;Lee, Hyun Min;Yoo, Heon;Lee, Seung Hoon;Kim, Kwang Gi
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.305-313
    • /
    • 2016
  • A number of fluorescence imaging techniques for use in the surgical removal of glioma have been developed over the course of the long history of neurosurgery. Various biomarkers, biochemical agents, and detection systems for glioma have also been developed. This review focuses on 5-aminolevulinic acid (5-ALA), which is used to detect glioma. Numerous forms of fluorescence-guided surgery use 5-ALA, which is helpful to the surgeon. The surgical microscope system is the observational method generally used with 5-ALA, while the loupe, endoscope, and exoscope are simpler alternatives. A system is needed for minimal resection and other issues that arise during neurosurgery. Such an enhanced system should be able to detect low-grade tumors and provide information on microinvasive diseases, resulting in an improved survival rate and better surgical skills. Development of systems that fulfill certain needs would help protect the brain function of the patient and broaden the use of such systems in neurosurgery.

Simultaneous Evaluation of Cellular Vitality and Drug Penetration in Multicellular Layers of Human Cancer Cells

  • Al-Abd Ahmed Mohammed;Lee Joo-Ho;Kuh Hyo-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.5
    • /
    • pp.309-314
    • /
    • 2006
  • The multicellular layers(MCL) of human cancer cells is a three dimensional(3D) in vitro model for human solid tumors which has been used primarily for the assessment of avascular penetration of anti-cancer drugs. For anti-cancer drugs with penetration problem, MCL represents a good experimental model that can provide clinically relevant data. Calcein-AM is a fluorescent dye that demonstrates the cellular vitality in a graded manner in cancer cell culture system. In the present study, we evaluated the use of calcein-AM for determination of anti-proliferative activity of anti-cancer agents in MCL model of DLD-1 human colorectal cancer cells. Optical sectioning of confocal imaging was compromised with photonic attenuation and penetration barrier in the deep layers of MCL. By contrast, fluorescent measurement on the cryo-sections provided a feasible alternative. Cold pre-incubation did not enhance the calcein-AM distribution to a significant degree in MCL of DLD-1 cells. However, the simultaneous determination of drug penetration and cellular vitality appeared to be possible in drug treated MCL. In conclusion, these data suggest that calcein-AM can be used for the simultaneous determination of drug-induced anti-proliferative effect and drug penetration in MCL model.

Medical Image Segmentation: A Comparison Between Unsupervised Clustering and Region Growing Technique for TRUS and MR Prostate Images

  • Ingale, Kiran;Shingare, Pratibha;Mahajan, Mangal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • Prostate cancer is one of the most diagnosed malignancies found across the world today. American cancer society in recent research predicted that over 174,600 new prostate cancer cases found and nearly 31,620 death cases recorded. Researchers are developing modest and accurate methodologies to detect and diagnose prostate cancer. Recent work has been done in radiology to detect prostate tumors using ultrasound imaging and resonance imaging techniques. Transrectal ultrasound and Magnetic resonance images of the prostate gland help in the detection of cancer in the prostate gland. The proposed paper is based on comparison and analysis between two novel image segmentation approaches. Seed region growing and cluster based image segmentation is used to extract the region from trans-rectal ultrasound prostate and MR prostate images. The region of extraction represents the abnormality area that presents in men's prostate gland. Detection of such abnormalities in the prostate gland helps in the identification and treatment of prostate cancer

Insufficiency fracture after radiation therapy

  • Oh, Dongryul;Huh, Seung Jae
    • Radiation Oncology Journal
    • /
    • v.32 no.4
    • /
    • pp.213-220
    • /
    • 2014
  • Insufficiency fracture occurs when normal or physiological stress applied to weakened bone with demineralization and decreased elastic resistance. Recently, many studies reported the development of IF after radiation therapy (RT) in gynecological cancer, prostate cancer, anal cancer and rectal cancer. The RT-induced insufficiency fracture is a common complication during the follow-up using modern imaging studies. The clinical suspicion and knowledge the characteristic imaging patterns of insufficiency fracture is essential to differentiate it from metastatic bone lesions, because it sometimes cause severe pain, and it may be confused with bone metastasis.

Dynamic Contrast-Enhanced MR Imaging in Detecting Local Tumor Progression after HIFU Ablation of Localized Prostate Cancer (국소적 전립선암의 고강도 집속 초음파 치료 후 국소적 암 재발의 발견과 역동적 조영증강 자기공명영상의 역할)

  • Park, Jung Jae;Kim, Chan Kyo;Lee, Hyun Moo;Park, Byung Kwan;Park, Sung Yoon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.3
    • /
    • pp.192-199
    • /
    • 2013
  • Purpose : To retrospectively evaluate the diagnostic performance of dynamic contrast-enhanced MR imaging (DCE-MRI) in detecting recurrent prostate cancer after HIFU of clinically localized cancer, as compared with T2-weighted imaging (T2WI). Materials and Methods: Twenty-six patients with increased prostate-specific antigen levels after HIFU were included in this study. All MR examinations were performed using T2WI and DCE-MRI, followed by transrectal ultrasound-guided biopsy. MRI and biopsy results were correlated in six prostate sectors. Residual or recurrent cancer after HIFU was defined as local tumor progression if biopsy results showed any cancer foci. Two independent readers interpreted the MR images. Results: Of 156 prostate sectors, 51 (33%) were positive for cancer in 17 patients. For detecting local tumor progression, the sensitivity of DCE-MRI and T2WI was 80% and 57% for reader 1 (P < 0.001) versus 84% and 61% for reader 2 (P < 0.001), respectively. The specificity and overall accuracy between DCE-MRI and T2WI showed no statistical difference in both readers (P > 0.05). Interobserver agreement of DCE-MRI and T2WI was moderate and fair, respectively. Conclusion: For detecting local tumor progression of prostate cancer after HIFU, DCE-MRI was more sensitive than T2WI, with less interobserver variability.

Monitoring microRNAs Using a Molecular Beacon in CD133+/CD338+ Human Lung Adenocarcinoma-initiating A549 Cells

  • Yao, Quan;Sun, Jian-Guo;Ma, Hu;Zhang, An-Mei;Lin, Sheng;Zhu, Cong-Hui;Zhang, Tao;Chen, Zheng-Tang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.161-166
    • /
    • 2014
  • Lung cancer is the most common causes of cancer-related deaths worldwide, and a lack of effective methods for early diagnosis has greatly impacted the prognosis and survival rates of the affected patients. Tumor-initiating cells (TICs) are considered to be largely responsible for tumor genesis, resistance to tumor therapy, metastasis, and recurrence. In addition to representing a good potential treatment target, TICs can provide clues for the early diagnosis of cancer. MicroRNA (miRNA) alterations are known to be involved in the initiation and progression of human cancer, and the detection of related miRNAs in TICs is an important strategy for lung cancer early diagnosis. As Hsa-miR-155 (miR-155) can be used as a diagnostic marker for non-small cell lung cancer (NSCLC), a smart molecular beacon of miR-155 was designed to image the expression of miR-155 in NSCLC cases. TICs expressing CD133 and CD338 were obtained from A549 cells by applying an immune magnetic bead isolation system, and miR-155 was detected using laser-scanning confocal microscopy. We found that intracellular miR-155 could be successfully detected using smart miR-155 molecular beacons. Expression was higher in TICs than in A549 cells, indicating that miR-155 may play an important role in regulating bio-behavior of TICs. As a non-invasive approach, molecular beacons could be implemented with molecular imaging to diagnose lung cancer at early stages.

Feasibility Study of Synthetic Diffusion-Weighted MRI in Patients with Breast Cancer in Comparison with Conventional Diffusion-Weighted MRI

  • Bo Hwa Choi;Hye Jin Baek;Ji Young Ha;Kyeong Hwa Ryu;Jin Il Moon;Sung Eun Park;Kyungsoo Bae;Kyung Nyeo Jeon;Eun Jung Jung
    • Korean Journal of Radiology
    • /
    • v.21 no.9
    • /
    • pp.1036-1044
    • /
    • 2020
  • Objective: To investigate the clinical feasibility of synthetic diffusion-weighted imaging (sDWI) at different b-values in patients with breast cancer by assessing the diagnostic image quality and the quantitative measurements compared with conventional diffusion-weighted imaging (cDWI). Materials and Methods: Fifty patients with breast cancer were assessed using cDWI at b-values of 800 and 1500 s/mm2 (cDWI800 and cDWI1500) and sDWI at b-values of 1000 and 1500 s/mm2 (sDWI1000 and sDWI1500). Qualitative analysis (normal glandular tissue suppression, overall image quality, and lesion conspicuity) was performed using a 4-point Likert-scale for all DWI sets and the cancer detection rate (CDR) was calculated. We also evaluated cancer-to-parenchyma contrast ratios for each DWI set in 45 patients with the lesion identified on any of the DWI sets. Statistical comparisons were performed using Friedman test, one-way analysis of variance, and Cochran's Q test. Results: All parameters of qualitative analysis, cancer-to-parenchyma contrast ratios, and CDR increased with increasing b-values, regardless of the type of imaging (synthetic or conventional) (p < 0.001). Additionally, sDWI1500 provided better lesion conspicuity than cDWI1500 (3.52 ± 0.92 vs. 3.39 ± 0.90, p < 0.05). Although cDWI1500 showed better normal glandular tissue suppression and overall image quality than sDWI1500 (3.66 ± 0.78 and 3.73 ± 0.62 vs. 3.32 ± 0.90 and 3.35 ± 0.81, respectively; p < 0.05), there was no significant difference in their CDR (90.0%). Cancer-to-parenchyma contrast ratios were greater in sDWI1500 than in cDWI1500 (0.63 ± 0.17 vs. 0.55 ± 0.18, p < 0.001). Conclusion: sDWI1500 can be feasible for evaluating breast cancers in clinical practice. It provides higher tumor conspicuity, better cancer-to-parenchyma contrast ratio, and comparable CDR when compared with cDWI1500.