Browse > Article
http://dx.doi.org/10.3807/JOSK.2016.20.2.305

Review of Neurosurgical Fluorescence Imaging Systems for Clinical Application  

Kim, Hong Rae (Biomedical Engineering Branch, Division of Convergence Technology, National Cancer Center)
Lee, Hyun Min (Biomedical Engineering Branch, Division of Convergence Technology, National Cancer Center)
Yoo, Heon (Specific Organs Cancer Branch & Hospital, National Cancer Center)
Lee, Seung Hoon (Specific Organs Cancer Branch & Hospital, National Cancer Center)
Kim, Kwang Gi (Biomedical Engineering Branch, Division of Convergence Technology, National Cancer Center)
Publication Information
Journal of the Optical Society of Korea / v.20, no.2, 2016 , pp. 305-313 More about this Journal
Abstract
A number of fluorescence imaging techniques for use in the surgical removal of glioma have been developed over the course of the long history of neurosurgery. Various biomarkers, biochemical agents, and detection systems for glioma have also been developed. This review focuses on 5-aminolevulinic acid (5-ALA), which is used to detect glioma. Numerous forms of fluorescence-guided surgery use 5-ALA, which is helpful to the surgeon. The surgical microscope system is the observational method generally used with 5-ALA, while the loupe, endoscope, and exoscope are simpler alternatives. A system is needed for minimal resection and other issues that arise during neurosurgery. Such an enhanced system should be able to detect low-grade tumors and provide information on microinvasive diseases, resulting in an improved survival rate and better surgical skills. Development of systems that fulfill certain needs would help protect the brain function of the patient and broaden the use of such systems in neurosurgery.
Keywords
Fluorescence; Microscope; Neuroendoscopy; Exoscope; Spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Hefti, G. von Campe, M. Moschopulosa, A. Siegnerb, H. Looserc, and H. Landolt, “5-aminolaevulinic acid-induced protoporphyrin IX fluorescence in high-grade glioma surgery,” Swiss Medical Weekly 138, 180-185 (2008).
2 S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping,” Ann. Surg. Oncol. 16, 2943-2952 (2009).   DOI
3 B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443-2451 (2008).
4 U. Pichlmeier, A. Bink, G. Schackert, and W. Stummer, “Resection and survival in glioblastoma multiforme: an RTOG recursive partitioning analysis of ALA study patients,” Neuro Oncol. 10, 1025-1034 (2008).   DOI
5 K. J. Murray, “Improved surgical resection of human brain tumors: Part 1. A preliminary study,” Surgical Neurology 17, 316-319 (1982).   DOI
6 S. Utsuki, H. Oka, S. Sato, S. Shimizu, S. Suzuki, Y. Tanizaki, K. Kondo, Y. Miyajima, and K. Fujii, “Histological examination of false positive tissue resection using 5-aminole­vulinic acid-induced fluorescence guidance,” Neurologia medico-chirurgica 47, 210-214 (2007).   DOI
7 P. P. Panciani, M. Fontanella, B. Schatlo, D. Garbossa, A. Agnoletti, A. Ducati, and M. Lanotte, “Fluorescence and image guided resection in high grade glioma,” Clinical Neurology and Neurosurgery 114, 37-41 (2012).   DOI
8 Y. Li, R. Rey-Dios, D. W. Roberts, P. A. Valdés, and A. A. Cohen-Gadol, “Intraoperative fluorescence-guided resection of high-grade gliomas: a comparison of the present techniques and evolution of future strategies,” World Neurosurgery 82, 175-185 (2014).   DOI
9 C. S. Betz, H. Steep, P. Janda, S. Arbogast, G. Grevers, R. Baumgartner, and A. Leunig, “A comparative study of normal inspection, autofluorescence and 5-ALA-induced PPIX fluore­scence for oral cancer diagnosis,” International Journal of Cancer 97, 245-252 (2002).   DOI
10 F. Ricci, F. Missiroli, and L. Cerulli, “Indocyanine green dye-enhanced micropulsed diode laser: a novel approach to subthreshold RPE treatment in a case of central serous chorioretinopathy,” European Journal of Ophthalmology 14, 74-82 (2003).
11 A. Omuro and L. M. DeAngelis, “Glioblastoma and other malignant gliomas: a clinical review,” JAMA 310, 1842-1850 (2013).   DOI
12 Y. D. Choi, K. G. Kim, J. K. Kim, K. W. Nam, H. H. Kim, and D. K. Sohn, “A novel endoscopic fluorescent clip for the localization of gastrointestinal tumors,” Surgical Endoscopy 25, 2372-2377 (2011).   DOI
13 M. V. Marshall, J. C. Rasmussen, I.-C. Tan, M. B. Aldrich, K. E. Adams, X. Wang, C. E. Fife, E. A. Maus, L. A. Smith, and E. M. Sevick-Muraca, “Near-infrared fluore­scence imaging in humans with indocyanine green: a review and update,” Open Surgical Oncology Journal (Online) 2, 12 (2010).   DOI
14 G. Themelis, J. S. Yoo, and V. Ntziachristos, “Multispectral imaging using multiple-bandpass filters,” Opt. Lett. 33, 1023-1025 (2008).   DOI
15 J. Coburger, J. Engelke, A. Scheuerle, D. R. Thal, M. Hlavac, C. R. Wirtz, and R. König, “Tumor detection with 5-aminolevulinic acid fluorescence and Gd-DTPA-enhanced intraoperative MRI at the border of contrast-enhancing lesions: a prospective study based on histopathological assessment,” Neurosurgical Focus 36, E3 (2014).
16 J. Shinoda, H. Yano, S. Yoshimura, A. Okumura, Y. Kaku, T. Iwama, and N. Sakai, “Fluorescence-guided resection of glioblastoma multiforme by using high-dose fluorescein sodium: technical note,” Journal of Neurosurgery 99, 597-603 (2003).   DOI
17 P. Kremer, M. Fardanesh, R. Ding, M. Pritsch, S. Zoubaa, and E. Frei, “Intraoperative fluorescence staining of malignant brain tumors using 5-aminofluorescein-labeled albumin,” Neurosurgery 64, ons53-ons61 (2009).
18 K. R. Porter, B. J. McCarthy, S. Freels, Y. Kim, and F. G. Davis, “Prevalence estimates for primary brain tumors in the United States by age, gender, behavior, and histology,” Neuro-Oncology 12, 520-7 (2010).   DOI
19 C. Nimsky, O. Ganslandt, M. Buchfelder, and R. Fahlbusch, “Intraoperative visualization for resection of gliomas: the role of functional neuronavigation and intraoperative 1.5 T MRI,” Neurological Research 28, 482-487 (2006).   DOI
20 Y. Kondo, Y. Murayama, H. Konishi, R. Morimura, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, T. Kubota, and M. Nakanishi, “Fluorescent detection of peritoneal metastasis in human colorectal cancer using 5-aminolevulinic acid,” International Journal of Oncology 45, 41-46 (2014).   DOI
21 J. H. Sherman, K. Hoes, J. Marcus, R. J. Komotar, C. W. Brennan, and P. H. Gutin, “Neurosurgery for brain tumors: update on recent technical advances,” Current Neurology and Neuroscience Reports 11, 313-319 (2011).   DOI
22 R. F. V. Lopez, N. Lange, R. Guy, and M. V. L. B. Bentley, “Photodynamic therapy of skin cancer: controlled drug delivery of 5-ALA and its esters,” Advanced Drug Delivery Reviews 56, 77-94 (2004).   DOI
23 C. R. Wirtz, F. K. Albert, M. Schwaderer, C. Heuer, A. Staubert, V. M. Tronnier, and S. Kunze, “The benefit of neuronavigation for neurosurgery analyzed by its impact on glioblastoma surgery,” Neurological Research 22, 354-360 (2000).   DOI
24 W. Stummer, H. J. Reulen, T. Meinel, U. Pichlmeier, W. Schumacher, J. C. Tonn, C. Jörg, V. Rohde, F. Oppel, B. Turowski, C. Woiciechowsky, K. Franz, and T. Pietsch, “Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias,” Neurosurgery 62, 564-576 (2008).   DOI
25 G. Widhalm, S. Wolfsberger, G. Minchev, A. Woehrer, M. Krssak, T. Czech, D. Prayer, S. Asenbaum, J. A. Hainfellner, and E. Knosp, “5-aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement,” Cancer 116, 1545­-1552 (2010).   DOI
26 W. Stummer, S. Stocker, A. Novotny, A. Heimann, O. Sauer, O. Kempski, N. Plesnila, J. Wietzorrek, and H. J. Reulen, “In vitro and in vivo porphyrin accumulation by C6 glioma cells after exposure to 5-aminolevulinic acid,” J. Photochem. Photobiol. B 45, 160-169 (1998).   DOI
27 R. Ishihara, Y. Katayama, T. Watanabe, A. Yoshino, T. Fukushima, and K. Sakatani, “Quantitative spectroscopic analysis of 5-aminolevulinic acid-induced protoporphyrin IX fluorescence intensity in diffusely infiltrating astrocytomas,” Neurologia Medico-Chirurgica 47, 53-57 (2007).   DOI
28 http://www.zeiss.com/meditec/en_us/products---solutions/neurosurgery/intraoperative-fluorescence/tumor/blue-400.html#technical-data
29 W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, “Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acidinduced porphyrins: a prospective study in 52 consecutive patients,” J. Neurosurg. 93, 1003-1013 (2000).   DOI
30 https://www.leica-microsystems.com/fileadmin/downloads/Leica%20FL400/Brochures/Leica_FL400_brochure_en.pdf
31 L. Marcu, J. A. Jo, P. V. Butte, W. H. Yong, B. K. Pikul, K. L. Black, and R. C. Thompson, “Fluorescence lifetime spectroscopy of glioblastoma multiforme,” Photochem. Photobiol. 80, 98-103 (2004).   DOI
32 G. E. Moore, W. T. Peyton, S. W. Hunter, and L. French, “The clinical use of sodium fluorescein and radioactive diiodofluorescein in the localization of tumors of the central nervous system,” Minn. Med. 31, 1073-1076 (1948).
33 S. Cortnum and R. J. Laursen, “Fluorescence-guided resection of gliomas,” Dan. Med. J. 59, A4460 (2012).
34 R. Cubeddu, P. Taroni, G. Valentini, and G. Canti, “Use of time-gated fluorescence imaging for diagnosis in biomedicine,” J. Photochem. Photobiol. B 12, 109-113 (1992).   DOI
35 R. D. Valle, S. T. Solis, M. A. I. Gastearena, R. G. de Eulate, P. D. Echávarri, and J. A. Mendiroz, “Surgery guided by 5-aminolevulinic fluorescence in glioblastoma: volumetric analysis of extent of resection in single-center experience,” J. Neurooncol. 102, 105-113 (2011).   DOI
36 P. V. Butte, B. K. Pikul, A. Hever, W. H. Yong, K. L. Black, and L. Marcu, “Diagnosis of meningioma by timeresolved fluorescence spectroscopy,” J. Biomed. Opt. 10, 064026 (2005).   DOI
37 R. J. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, USA, 2006).
38 Y. G. Chung, J. A. Schwartz, C. M. Gardner, R. E. Sawaya, and S. L. Jacques, “Diagnostic potential of laser-induced autofluorescence emission in brain tissue,” J. Korean Med. Sci. 12, 135-142 (1997).   DOI
39 F. Acerbi, M. Broggi, M. Eoli, E. Anghileri, L. Cuppini, B. Pollo, M. Schiariti, S. Visintini, C. Orsi, and A. Franzini, “Fluorescein-guided surgery for grade IV gliomas with a dedicated filter on the surgical microscope: preliminary results in 12 cases,” Acta neurochirurgica 155, 1277-1286 (2013).   DOI
40 W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H. J. Reulen, “Fluorescence guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomized controlled multicentre phase III trial,” Lancet Oncol. 7, 392-401 (2006).   DOI
41 W. Stummer, H. Stepp, G. Moller, A. Ehrhardt, M. Leonhard, and H. J. Reulen, “Technical principles for protoporphyrin­-IX-fluorescence guided microsurgical resection of malignant glioma tissue,” Acta Neurochir. 140, 995-1000 (1998).   DOI
42 P. V. Butte, A. N. Mamelak, M. Nuno, S. I. Bannykh, K. L. Black, and L. Marcu, “Fluorescence lifetime spectroscopy for guided therapy of brain tumors,” NeuroImage 54(Suppl 1), S125-S135 (2011).   DOI
43 https://www.leica-microsystems.com/fileadmin/downloads/Leica%20FL400/Newsletters/reSolution_Surgical_News_No1_en.pdf
44 R. Ritz, R. Daniels, S. Noell, G. C. Feigl, V. Schmidt, A. Bornemann, K. Ramina, D. Mayer, K. Dietz, W. S. Strauss, and M. Tatagiba, “Hypericin for visualization of high grade gliomas: first clinical experience,” European Journal of Surgical Oncology (EJSO) 38, 352-360 (2012).   DOI
45 J. Piquer, J. L. Llácer, V. Rovira, P. Riesgo, R. Rodriguez, and A. Cremades, “Fluorescence-guided surgery and biopsy in gliomas with an exoscope system,” BioMed Research International 2014, 207974 (2014).
46 B. Chen, H. Wang, P. Ge, J. Zhao, W. Li, H. Gu, G. Wang, Y. Luo, and D. Chen, “Gross total resection of glioma with the intraoperative fluorescence-guidance of fluorescein sodium,” Int. J. Med. Sci. 9, 708-714 (2012).   DOI
47 M. M. Haglund, M. S. Berger, and D. W. Hochman, “Enhanced optical imaging of human gliomas and tumor margins,” Neurosurgery 38, 308-317 (1996).   DOI
48 M. Rapp, M. Kamp, H. J. Steiger, and M. Sabel, “Endoscopic-­assisted visualization of 5-aminolevulinic acid--induced fluorescence in malignant glioma surgery: A technical note,” World Neurosurgery 82, e277-e279 (2014).   DOI
49 F. Koenig, F. J. McGovern, H. Enquist, R. Larne, T. F. Deutsch, and K. T. Schomacker, “Autofluorescence guided biopsy for the early diagnosis of bladder carcinoma,” J. Urol. 159, 1871-1875 (1998).   DOI
50 B. Chance, M. Cope, B. Dugan, N. Ramanujam, and B. Tromberg, “Phase measurements of absorbers and scatterers in tissue: review,” Rev. Sci. Instrum. 69, 3457-3481 (1998).   DOI
51 G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603-632 (1998).   DOI
52 Z. Malik, M. Dishi, and Y. Garini, “Fourier transform multipixel spectroscopy and spectral imaging of protoporphyrin in single melanoma cells,” Photochem. Photobiol. 63, 608-14 (1996).   DOI
53 P. Hopton, T. S. Walsh, and A. Lee, “Measurement of cerebral blood volume using near-infrared spectroscopy and indocyanine green elimination,” Journal of Applied Physiology 87, 1981-1987 (1999).   DOI
54 S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, and S. Svanberg, “Malignant tumor and atherosclerotic plaque diagnosis using laser induced fluorescence,” IEEE J. Quantum Electron. 26, 2207-2217 (1990).   DOI
55 I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: Fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42, 803-814 (1996).
56 N. Vasilis, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” European Radiology 13, 195-208 (2003).
57 I. J. Biglio and S. G. Bown, “Spectroscopic sensing of cancer and cancer therapy,” Cancer Biol. Ther. 3, 259-267 (2004).   DOI
58 M. F. Mitchell, S. B. Cantor, N. Ramanujam, G. Tortolero-Luna, and R. Richards-Kortum, “Fluorescence spectroscopy for diagnosis of squamous intraepithelial lesions of the cervix,” Obstet. Gynecol. 93, 462-470 (1999).
59 A. Nijssen, T. C. Bakker Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64-69 (2002).   DOI
60 F. R. Hirsch, S. A. Prindiville, Y. E. Miller, W. A. Franklin, E. C. Dempsey, J. R. Murphy, P. A. Bunn, and T. C. Kennedy, “Fluorescence versus white-light bronchoscopy for detection of preneoplastic lesions: a randomized study,” J. Natl. Cancer Inst. 93, 1385-1391 (2001).   DOI
61 J. C. Tonn and W. Stummer, “Fluorescence-guided resection of malignant gliomas using 5-aminolevulinic acid: practical use, risks, and pitfalls,” Clin. Neurosurg. 55, 20-26 (2008).
62 A. Gillenwater, R. Jacob, R. Ganeshappa, B. Kemp, A. K. El-Naggar, K. Adel, J. L. Palmer, G. Clayman, M. F. Mitchell, and R. Richards-Kortum, “Noninvasive diagnosis of oral neoplasia based on fluorescence spectroscopy and native tissue autofluorescence,” Arch. Otolaryngol. Head Neck Surg. 124, 1251-1258 (1998).   DOI
63 J. Wohlrab, A. Vollmann, S. Wartewig, W. C. Marsch, and R. Neubert, “Noninvasive characterization of human stratum corneum of undiseased skin of patients with atopic dermatitis and psoriasis as studied by Fourier transform Raman spectroscopy,” Biopolymers 62, 141-146 (2001).   DOI
64 E. B. Hanlon, I. Itzkan, R. R. Dasari, M. S. Feld, R. J. Ferrante, A. C. McKee, D. Lathi, and N. W. Kowall, “Nearinfrared fluorescence spectroscopy detects Alzheimer’s disease in vitro photochem,” Photobiol. 70, 236-242 (1999).
65 T. Kuroiwa, Y. Kajimoto, M. Furuse, and S. I. Miyatake, “A surgical loupe system for observing protoporphyrin IX fluorescence in high-grade gliomas after administering 5­-aminolevulinic acid,” Photodiagnosis and Photodynamic Therapy 10, 379-381 (2013).   DOI
66 R. Ritz, G. C. Feigl, M. U. Schuhmann, A. Ehrhardt, S. Danz, S. Noell, A. Bornemann, and M. S. Tatagiba, “Use of 5-ALA fluorescence guided endoscopic biopsy of a deep-seated primary malignant brain tumor: Technical note,” Journal of Neurosurgery 114, 1410-1413 (2011).   DOI