• 제목/요약/키워드: Cancer Metabolism

검색결과 502건 처리시간 0.02초

A Unique Gene Expression Signature of 5-fluorouracil

  • Kim, Ja-Eun;Yoo, Chang-Hyuk;Park, Dong-Yoon;Lee, Han-Yong;Yoon, Jeong-Ho;Kim, Se-Nyun
    • Molecular & Cellular Toxicology
    • /
    • 제1권4호
    • /
    • pp.248-255
    • /
    • 2005
  • To understand the response of cancer cells to anticancer drugs at the gene expression level, we examined the gene expression changes in response to five anticancer drugs, 5-fluorouracil, cytarabine, cisplatin, paclitaxel, and cytochalasin D in NCI-H460 human lung cancer cells. Of the five drugs, 5-fluorouracil had the most distinctive gene expression signature. By clustering genes whose expression changed significantly, we identified three clusters with unique gene expression patterns. The first cluster reflected the up-regulation of gene expression by cisplatin, and included genes involved in cell death and DNA repair. The second cluster pointed to a general reduction of gene expression by most of the anticancer drugs tested. A number of genes in this cluster are involved in signal transduction that is important for communication between cells and reception of extracellular signals. The last cluster represented reduced gene expression in response to 5-fluorouracil, the genes involved being implicated in DNA metabolism, the cell cycle, and RNA processing. Since the gene expression signature of 5-fluorouracil was unique, we investigated it in more detail. Significance analysis of microarray data (SAM) identified 808 genes whose expression was significantly altered by 5-fluorouracil. Among the up-regulated genes, those affecting apoptosis were the most noteworthy. The down-regulated genes were mainly associated with transcription-and translation-related processes which are known targets of 5-fluorouracil. These results suggest that the gene expression signature of an anticancer drug is closely related to its physiological action and the response of caner cells.

A Modeling Study of Co-transcriptional Metabolism of hnRNP Using FMR1 Gene

  • Ro-Choi, Tae Suk;Choi, Yong Chun
    • Molecules and Cells
    • /
    • 제23권2호
    • /
    • pp.228-238
    • /
    • 2007
  • Since molecular structure of hnRNP is not available in foreseeable future, it is best to construct a working model for hnRNP structure. A geometric problem, assembly of $700{\pm}20$ nucleotides with 48 proteins, is visualized by a frame work in which all the proteins participate in primary binding, followed by secondary, tertiary and quaternary binding with neighboring proteins without additional import. Thus, 40S hnRNP contains crown-like secondary structure (48 stemloops) and appearance of 6 petal (octamers) rose-like architectures. The proteins are wrapped by RNA. Co-transcriptional folding for RNP fibril of FMR1 gene can produce 2,571 stem-loops with frequency of 1 stem-loop/15.3 nucleotides and 53 40S hnRNP beaded structure. By spliceosome driven reactions, there occurs removal of 16 separate lariated RNPs, joining 17 separate beaded exonic structures and anchoring EJC on each exon junction. Skipping exon 12 has 5'GU, 3'AG and very compact folding pattern with frequency of 1 stem-loop per 12 nucleotides in short exon length (63 nucleotides). 5' end of exon 12 contains SS (Splicing Silencer) element of UAGGU. In exons 10, 15 and 17 where both regular and alternative splice sites exist, SS (hnRNP A1 binding site) is observed at the regular splicing site. End products are mature FMR-1 mRNP, 4 species of Pri-microRNAs derived from introns 7,9,15 and 3'UTR of exon17, respectively. There may also be some other regulatory RNAs containing ALU/Line elements as well.

MALDI-MS-Based Quantitative Analysis of Bioactive Forms of Vitamin D in Biological Samples

  • Ahn, Da-Hee;Kim, Hee-jin;Kim, Seong-Min;Jo, Sung-Hyun;Jeong, Jae-Hyun;Kim, Yun-Gon
    • Korean Chemical Engineering Research
    • /
    • 제58권1호
    • /
    • pp.106-112
    • /
    • 2020
  • Analyzing vitamin D levels is important for monitoring health conditions because vitamin D deficiency is associated with various diseases such as rickets, osteomalacia, cardiovascular disorders and some cancers. However, vitamin D concentration in the blood is very low with optimal level of 75 nmol/L, making quantitative analysis difficult. The objective of this study was to develop a highly sensitive analysis method for vitamin D using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS). 25-hydroxyvitamin D (25(OH)D), which has been used as an indicator of vitamin D metabolites in human biofluids was chemically derivatized using a secosteroid signal enhancing tag (SecoSET) with powerful dienophile and permanent positive charge. The SecoSET-derivatized 25(OH)D provided good linearity (R2 > 0.99) and sensitivity (limit of quantitation: 11.3 fmol). Chemical derivatization of deuterated 25-hydroxyvitamin D3 (d6-25(OH)D3) with SecoSET enabled absolute quantitative analysis using MALDI-MS. The highly sensitive method could be successfully applied into monitoring of quantitative changes of bioactive vitamin D metabolites after treatment with ketoconazole to inhibit 1α-hydroxylase reaction related to vitamin D metabolism in human breast cancer cells. Taken together, we developed a MALDI-MS-based platform that could quantitatively analyze vitamin D metabolites from cell products, blood and other biofluids. This platform may be applied to monitor various diseases associated with vitamin D deficiency such as rickets, osteomalacia and breast cancer.

Potent Inhibition of Human Cytochrome P450 1 Enzymes by Dimethoxyphenylvinyl Thiophene

  • Lee, Sang-Kwang;Kim, Yongmo;Kim, Mie-Young;Kim, Sanghee;Chun, Young-Jin
    • Archives of Pharmacal Research
    • /
    • 제27권2호
    • /
    • pp.199-205
    • /
    • 2004
  • Cytochrome P450 (P450) 1 enzymes such as P450 1A1, 1A2, and 181 are known to be involved in the oxidative metabolism of various procarcinogens and are regarded as important target enzymes for cancer chemoprevention. Previously, several hydroxystilbene compounds were reported to inhibit P450 1 enzymes and were rated as candidate chemopreventive agents. In this study, we investigated the inhibitory effect of 2-[2-(3,5-dimethoxyphenyl)vinyl]-thiophene (DMPVT), produced from the chemical modification of oxyresveratrol, on the activities of P450 1 enzymes. The inhibitory potential by DMPVT on the P450 1 enzyme activity was evaluated with the Escherichia coli membranes of the recombinant human cytochrome P450 1A1, 1A2, or 1B1 coexpressed with human NADPH-P450 reductase. DMPVT significantly inhibited ethoxyresorufin O-deethylation (EROD) activities with $IC_{50}$ values of 61, 11, and 2 nM for 1A1, 1A2, and 1B1, respectively. The EROO activity in OMBA-treated rat lung microsomes was also significantly inhibited by OMPVT in a dose-dependent manner. The modes of inhibition by DMPVT were non-competitive for all three P450 enzymes. The inhibition of P450 1B1-mediated EROD activity by OMPVT did not show the irreversible mechanism-based effect. The loss of EROD activity in P450 1B1 with OMPVT incubation was not blocked by treatment with the trapping agents such as glutathione, N-acetylcysteine, or dithiothreitol. Taken together, the results suggested DMPVT to be a strong noncompetitive inhibitor of human P450 1 enzymes that should be considered as a good candidate for a cancer chemopreventive agent in humans.

홍삼 에탄올 추출물의 생리활성과 세포증식 효과 (Biological Activities and Cell Proliferation effects of Red Ginseng Ethanol Extracts)

  • 황성연;안성훈
    • 대한약침학회지
    • /
    • 제14권3호
    • /
    • pp.55-61
    • /
    • 2011
  • Objectives: Reactive Oxygen Species(ROS) are continuously produced at a high rate as a by-product of aerobic metabolism. Since tissue damage by free radical, ROS such as hydrogen peroxide($H_2O_2$), nitric oxide(NO) increases with age. Several lines of evidence provided that ROS appears to cause to develop aging-related various diseases such as cancer, arthritis, cardiovascular disease. In this study, we have conducted to investigate the pharmacological effects of red ginseng for the development possibility to pharmacopuncture drug sources or healthy aid foods. Methods: For our aims, it was investigated the biological activities of Red Ginseng ethanol extracts (RGEE) by measuring total polyphenol contents, total flavonoid contents, DPPH radical scavenging activity, ABTS radical scavenging activity and cell viability of MCF 10A and SK-MEL-2 in vitro with MTT assay method. Results: The total polyphenol contents of RGEE was 3.06${\pm}$0.11mg/g in 10mg/ml, the total flavonoid contents of RGEE was 1.35${\pm}$0.01mg/g in same concentration. The ABTS radical scavenging activity was about 80% and that of DPPH activity was 65% in 50mg/ml of RGEE. The cell viability of SKMEL-2, skin cancer cell line was decreased and that of MCF 10A, skin normal cell line was increased. Conclusions: We conclude that RGEE may be useful as potential functional foods or pharmacopuncture drug sources on the diseases induced by oxidant stress.

Similarities and Distinctions in the Effects of Metformin and Carbon Monoxide in Immunometabolism

  • Park, Jeongmin;Joe, Yeonsoo;Ryter, Stefan W.;Surh, Young-Joon;Chung, Hun Taeg
    • Molecules and Cells
    • /
    • 제42권4호
    • /
    • pp.292-300
    • /
    • 2019
  • Immunometabolism, defined as the interaction of metabolic pathways with the immune system, influences the pathogenesis of metabolic diseases. Metformin and carbon monoxide (CO) are two pharmacological agents known to ameliorate metabolic disorders. There are notable similarities and differences in the reported effects of metformin and CO on immunometabolism. Metformin, an anti-diabetes drug, has positive effects on metabolism and can exert anti-inflammatory and anti-cancer effects via adenosine monophosphate-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms. CO, an endogenous product of heme oxygenase-1 (HO-1), can exert anti-inflammatory and antioxidant effects at low concentration. CO can confer cytoprotection in metabolic disorders and cancer via selective activation of the protein kinase R-like endoplasmic reticulum (ER) kinase (PERK) pathway. Both metformin and CO can induce mitochondrial stress to produce a mild elevation of mitochondrial ROS (mtROS) by distinct mechanisms. Metformin inhibits complex I of the mitochondrial electron transport chain (ETC), while CO inhibits ETC complex IV. Both metformin and CO can differentially induce several protein factors, including fibroblast growth factor 21 (FGF21) and sestrin2 (SESN2), which maintain metabolic homeostasis; nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of the antioxidant response; and REDD1, which exhibits an anticancer effect. However, metformin and CO regulate these effects via different pathways. Metformin stimulates p53- and AMPK-dependent pathways whereas CO can selectively trigger the PERK-dependent signaling pathway. Although further studies are needed to identify the mechanistic differences between metformin and CO, pharmacological application of these agents may represent useful strategies to ameliorate metabolic diseases associated with altered immunometabolism.

Which Index for Muscle Mass Represents an Aging Process?

  • Kim, Hyung-Kook;Lee, You Jin;Lee, Young-Kyun;Kim, Hongji;Koo, Kyung-Hoi
    • 대한골대사학회지
    • /
    • 제25권4호
    • /
    • pp.219-226
    • /
    • 2018
  • Background: Although studies and interest in sarcopenia have increased, it is still a matter of debate which muscle mass index better represents the aging process. We compared 3 indices for muscle mass (appendicular skeletal muscle mass [ASM]/weight, $ASM/height^2$, and the body mass index [BMI]-adjusted muscle mass index [ASM/BMI]) to determine which better reflected the aging process in terms of the decline in bone mineral density (BMD), visual acuity (VA), hearing power, renal function, pulmonary function, and handgrip strength. Methods: We performed a retrospective cross-sectional study using the Korea National Health and Nutrition Examination Survey in the Korean population. Between 2008 and 2011, a total of 14,415 men and 17,971 women aged 10 years or older participated in the study. We plotted the changes in the 3 indices of muscle mass and compared these with changes in BMD, VA, hearing power, renal function, pulmonary function, and handgrip strength according to each age group. Results: The ASM/BMI showed similar changes in terms of surrogate markers of the aging process, while the ASM/weight and $ASM/height^2$ showed no correlation. Conclusions: Among muscle indices for sarcopenia, only the ASM/BMI represented the aging process.

Causal Inference Network of Genes Related with Bone Metastasis of Breast Cancer and Osteoblasts Using Causal Bayesian Networks

  • Park, Sung Bae;Chung, Chun Kee;Gonzalez, Efrain;Yoo, Changwon
    • 대한골대사학회지
    • /
    • 제25권4호
    • /
    • pp.251-266
    • /
    • 2018
  • Background: The causal networks among genes that are commonly expressed in osteoblasts and during bone metastasis (BM) of breast cancer (BC) are not well understood. Here, we developed a machine learning method to obtain a plausible causal network of genes that are commonly expressed during BM and in osteoblasts in BC. Methods: We selected BC genes that are commonly expressed during BM and in osteoblasts from the Gene Expression Omnibus database. Bayesian Network Inference with Java Objects (Banjo) was used to obtain the Bayesian network. Genes registered as BC related genes were included as candidate genes in the implementation of Banjo. Next, we obtained the Bayesian structure and assessed the prediction rate for BM, conditional independence among nodes, and causality among nodes. Furthermore, we reported the maximum relative risks (RRs) of combined gene expression of the genes in the model. Results: We mechanistically identified 33 significantly related and plausibly involved genes in the development of BC BM. Further model evaluations showed that 16 genes were enough for a model to be statistically significant in terms of maximum likelihood of the causal Bayesian networks (CBNs) and for correct prediction of BM of BC. Maximum RRs of combined gene expression patterns showed that the expression levels of UBIAD1, HEBP1, BTNL8, TSPO, PSAT1, and ZFP36L2 significantly affected development of BM from BC. Conclusions: The CBN structure can be used as a reasonable inference network for accurately predicting BM in BC.

Oral administration of Grifola frondosa affect lipid metabolism and insulin signaling pathway on BKS. Cg-+Leprdb/+Leprdb/OlaHsd mouse

  • Yun, Seong-Bo;Kim, Dae-Young
    • 한국동물생명공학회지
    • /
    • 제36권4호
    • /
    • pp.203-211
    • /
    • 2021
  • Diabetic mellitus (DM) is a carbohydrate metabolic disorder that involves high blood sugar because insulin works abnormally. Type 2 diabetes accounts for most of them. However, diabetes treatments such as GLP-1 and DPP-4 inhibitors commonly caused side effects including gastrointestinal disorders. Grifola frondosa (G. frondosa) revealed various pharmacological effects in recent studies. It has a variety of anti-cancer polysaccharides through host-mediated mechanisms. D-fraction in G. frondosa has apoptotic effects, promoting myeloid cell proliferation and differentiation into granulocytes-macrophages. It has also been shown to reduce the survival rate of breast cancer cells. Though, no further study has been conducted on the specific effects of G. frondosa in the db/db mouse. Therefore, we would like to research the blood glucose improving effect of G. frondosa, a natural material, in type 2 diabetes model mouse, in this study. G. frondosa was administered to the disease model mouse (BKS.Cg-+Leprdb/+Leprdb/OlaHsd) for 8 weeks to monitor weight and blood glucose changes every week. And we evaluated anti-diabetes effects by checking biomarker changes shown through blood. Experiment did not show statistically significant weight differences, but control groups showed significantly higher weight gain than G. frondosa administered groups. We collected blood from the tail veins of the db/db mouse each week. As a result, the lowest blood sugar level was shown in the 500 mg/kg group of G. frondosa. Glucose in the blood was examined with HBA1c, and 7.8% was shown in the 500 mg/kg administration group, lower than in other groups. These results suggest the potential improvements of diabetes in G. frondosa.

한국인 남성에서 GSTM1과 CYP1A1 유전자 다형성과 원발성폐암의 유전적 감수성 (Polymorphisms of GSTM1 and CYP1A1, and Susceptibility to Primary Lung Cancer in Korean Males)

  • 배낙천;이수연;채포희;강경희;김경록;차승익;채상철;김창호;정태훈;박재용
    • Tuberculosis and Respiratory Diseases
    • /
    • 제50권5호
    • /
    • pp.568-578
    • /
    • 2001
  • 서 론 : 폐암의 80-90%는 흡연과 관계가 있으나 흡연자의 일부에서만 폐암이 발생하는 현상은 개체의 유전적 소인이 폐암발생을 결정하는 주요 요인임을 시사한다. 저자들은 한국인에서 발암물질 대사효소계의 유전자 다형성에 따른 폐암의 위험도를 조사하고자 연구를 시행하였으며 본 연구에서는 담배 내에 존재하는 benzo(a)pyrene 등의 polycylic aromatic hydrocarbon의 대사에 관여하는 GSTM1 과 CYP1A1 유전자 다형성에 따른 폐암의 상대위험도를 조사하였다. 방 법 : 1998년 1월부터 1998년 9월까지 경북대학교병원내과에서 병리학적으로 폐암으로 확진된 환자를 대상으로 하였으며 악성종양으로 진단받은 과거력이 있는 사람은 제외하였다. 대조군은 1998년 1월부터 1999년 8월까지 경북대학교병원 건강검진센터를 방문한 40세 이상의 검진자들을 대상으로 하였으며 호흡기질환이나 악성종양이 있는 경우는 제외하였다. 대상인의 나이, 성, 흡연력, 과거력 등은 면접이나 병력지를 통해 얻었으며, 시료는 전혈 5cc에서 DNA를 추출하고 PCR과 RFLP법을 통해 GSTM1과 CYP1A1의 유전자 다형성을 조사하였다. 결 과 : GSTM1(-) 형인 경우 소세포폐암의 대응비가 1.772로 높았으나 통계적 유의성은 없었다. CYP1A1 MspI 유전자형이 m2/m2 인 경우 m1/m1 형인 경우에 비해 소세포폐암의 대응비가 3.374(95% CI=1.092-10.421)로 유의하게 높았다. 결 론 : GSTM1과 CYP1A1 유전자형은 폐암의 위험도를 결정하는 인자로 생각되나, 보다 많은 예를 대상으로 한 연구가 필요할 것으로 생각된다.

  • PDF