• Title/Summary/Keyword: Cancer Cell Lines

Search Result 1,739, Processing Time 0.03 seconds

Down-regulation of FRα Inhibits Proliferation and Promotes Apoptosis of Cervical Cancer Cells in Vitro

  • Bai, Li-Xia;Ding, Ling;Jiang, Shi-Wen;Kang, Hui-Jie;Gao, Chen-Fei;Chen, Chen;Zhou, Qin;Wang, Jin-Tao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5667-5672
    • /
    • 2014
  • Folate receptor alpha ($FR{\alpha}$) mediates folate uptake by endocytosis, and while folate is essential to DNA methylation and synthesis and may have an important role in proliferating cells. $FR{\alpha}$ is known to be expressed in rapidly proliferating cells, including many cancer cell lines, but there has been no systematic assessment of expression in cervical cancer cell lines. The aim of the present study was to evaluate the effects of $FR{\alpha}$ on proliferation and apoptosis of cervical cells and correlation mechanism. In this study, we investigated the biological function of $FR{\alpha}$ in Hela cells using RNA interference. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK8) assay, while cell cycling and apoptosis were assessed by flow cytometry, mRNA levels by real time-PCR and protein levels of $FR{\alpha}$, c-Fos and c-Jun by Western blotting. The results revealed that $FR{\alpha}$ was highly expressed in Hela cells and its silencing with a small interfering RNA (siRNA) inhibited cell proliferation and induced cell apoptosis, arresting the cell cycle in G0/G1 stages while decreasing the proportion in S and G2/M stages, and suppressed the expression levels of c-Fos and c-Jun. In conclusion, the results of this study indicated that $FR{\alpha}$ down-regulation might be capable of suppressing cervical cancer cell proliferation and promoting apoptosis. It suggested that $FR{\alpha}$ might be a novel therapeutic target for cervical cancer.

Potent Antitumor Activity of SB31 and Identification of Active Compound

  • Kim, Yong;Kim, Song-Bae;Bang, Seong-Cheol;Ahn, Byung-Zun
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.233.3-234
    • /
    • 2002
  • SB31, an extract of Pulsatilla koreana, has been tried as an antitumor agent by traditional medicine pratitioner in Korea for the past 30 years, SB31 was evaluated for cytotoxic and antitumor activity against a variety of cancer cell lines. The SB31 exhibited 5-6 fold less cytotoxic activity against normal mononuclear cells (ED$\sub$50/. 1.1 mg/$m\ell$) than against cancer cell lines (ED$\sub$50/ 0.14-0.19mg/$m\ell$). (omitted)

  • PDF

Cytotoxic Effects of Chloroform Extracts and Fraction from Cornis fructus on Cancer Cell Lines

  • Hyun, Ja-Chun;Choi, Won-Hyung;Seung, Hwa-Baek
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.210.2-210.2
    • /
    • 2003
  • Cornis fructus were extracted by successive extractions and then fractionated with chloroform extract to get active fractions. This study was performed to determine the cytotoxic effect of chloroform extract from Cornis fructus on NIH 3T3 fibroblasts and cancer cell lines using MTT assay. All extracts did not exhibit cytotoxicity in HIH 3T3 fibroblasts. Chloroform extract exhibited antitumor activity in A549, MDA-MB-123, B16 melanoma and SNU-C4 cells. Futher fractionation with chloroform extract was performed to obtain effective fractions. (omitted)

  • PDF

Knockdown of LKB1 Sensitizes Endometrial Cancer Cells via AMPK Activation

  • Rho, Seung Bae;Byun, Hyun Jung;Kim, Boh-Ram;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.650-657
    • /
    • 2021
  • Metformin is an anti-diabetic drug and has anticancer effects on various cancers. Several studies have suggested that metformin reduces cell proliferation and stimulates cell-cycle arrest and apoptosis. However, the definitive molecular mechanism of metformin in the pathophysiological signaling in endometrial tumorigenesis and metastasis is not clearly understood. In this study, we examined the effects of metformin on the cell viability and apoptosis of human cervical HeLa and endometrial HEC-1-A and KLE cancer cells. Metformin suppressed cell growth in a dose-dependent manner and dramatically evoked apoptosis in HeLa cervical cancer cells, while apoptotic cell death and growth inhibition were not observed in endometrial (HEC-1-A, KLE) cell lines. Accordingly, the p27 and p21 promoter activities were enhanced while Bcl-2 and IL-6 activities were significantly reduced by metformin treatment. Metformin diminished the phosphorylation of mTOR, p70S6K and 4E-BP1 by accelerating adenosine monophosphate-activated kinase (AMPK) in HeLa cancer cells, but it did not affect other cell lines. To determine why the anti-proliferative effects are observed only in HeLa cells, we examined the expression level of liver kinase B1 (LKB1) since metformin and LKB1 share the same signalling system, and we found that the LKB1 gene is not expressed only in HeLa cancer cells. Consistently, the overexpression of LKB1 in HeLa cancer cells prevented metformin-triggered apoptosis while LKB1 knockdown significantly increased apoptosis in HEC-1-A and KLE cancer cells. Taken together, these findings indicate an underlying biological/physiological molecular function specifically for metformin-triggered apoptosis dependent on the presence of the LKB1 gene in tumorigenesis.

Expression of the FHIT gene Located in Chromosome 3p14.2 in Human Lung Cancer Cell Lines (폐암 세포주에서 염색체 3p14.2에 위치한 FHIT 유전자의 발현 이상에 대한 연구)

  • Kim, Cheol-Hyeon;Yoo, Chul-Gyu;Lee, Choon-Taek;Han, Sung-Koo;Shim, Young-Soo;Kim, Young-Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.5
    • /
    • pp.984-991
    • /
    • 1998
  • Background: The 3p deletions has been shown to be the most frequent alteration in lung cancers, strongly suggesting the presence of at least one tumor suppressor gene in this chromosomal region. However, no solid candidate for the tumor suppressor gene(s) on 3p has as yet been identified. Recent attention has focused on a candidate 3p14.2 tumor suppressor gene, FHIT, which is located in a region that is homozygously deleted in multiple tumor cell lines and disrupted by the hereditary renal cell carcinoma t(3;8) chromosomal translocation breakpoint FHIT also spans FRA3B, the most common fragile sites in the human genome. In the present study, we have analyzed expression of the FHIT gene in lung cancer cell lines. Methods: RNA from 21 lung cancer cell lines (16 NSCLC, 5 SCLC) were extracted using standard procedures. Random-primed. first strand cDNAs were synthesized from total RNA and PCR amplication of coding exons 5 to 9 was performed. The RT-PCR products were electrophoresed in 1.5% ethidium bromide-stained agarose gels. Results: 12 of 21(57%) lung cancer cell lines exhibited absent or aberrant FHIT expression [7 of 16(44%) of non-small cell lung cancer and 5 of 5(100%) of small cell lung cancer cell lines]. Conclusion: The result shows that abnormal transcription of the FHIT gene is common in human lung cancer cell lines, especially in small cell lung cancer.

  • PDF

Ellagic Acid Inhibits Migration and Invasion by Prostate Cancer Cell Lines

  • Pitchakarn, Pornsiri;Chewonarin, Teera;Ogawa, Kumiko;Suzuki, Shugo;Asamoto, Makoto;Takahashi, Satoru;Shirai, Tomoyuki;Limtrakul, Pornngarm
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2859-2863
    • /
    • 2013
  • Polyphenolic compounds from pomegranate fruit extracts (PFEs) have been reported to possess antiproliferative, pro-apoptotic, anti-inflammatory and anti-invasion effects in prostate and other cancers. However, the mechanisms responsible for the inhibition of cancer invasion remain to be clarified. In the present study, we investigated anti-invasive effects of ellagic acid (EA) in androgen-independent human (PC-3) and rat (PLS10) prostate cancer cell lines in vitro. The results indicated that non-toxic concentrations of EA significantly inhibited the motility and invasion of cells examined in migration and invasion assays. The EA treatment slightly decreased secretion of matrix metalloproteinase (MMP)-2 but not MMP-9 from both cell lines. We further found that EA significantly reduced proteolytic activity of collagenase/gelatinase secreted from the PLS-10 cell line. Collagenase IV activity was also concentration-dependently inhibited by EA. These results demonstrated that EA has an ability to inhibit invasive potential of prostate cancer cells through action on protease activity.

Proximate Analysis, Fatty Acid Composition of Lycopus lucidus Turcz. and Its Cytotoxic Effect in Cancer Cell Lines (택란의 일반성분, 지방산 조성 및 세포독성 효과)

  • Na, Eun;Lee, Jung-Woo;Lim, Sun-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.3
    • /
    • pp.208-215
    • /
    • 2019
  • In this paper, we investigate to determine quality characteristics, fatty acid composition and cytotoxic effect of extracts and fractions from whole Lycopus lucidus Turcz. roots. Additionally, we evaluated cytotoxic activity against the growth of human fibrosarcoma cells (HT-1080) and human gastric adenocarcinoma (AGS), human colon cancer cell (HT-29) lines using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Acetone+methylene chloride (A+M) and methanol (MeOH) extracts from L. lucidus Turcz. were obtained through solvent extraction. Then we further fractionated both extracts with n-hexane, 85% aq. MeOH, n-butanol (n-BuOH) and water. In fatty acid composition, L. lucidus Turcz. contained 33.2% of 18:1n-9 and 1.81% of 18:3n-3, respectively. The incorporation of treatment with A+M and MeOH extracts and n-hexane, 85% aq. MeOH, n-butanol (n-BuOH) and water fractions dose-dependently increased cytotoxicity against the growth of HT-1080 and AGS, HT-29 cancer cells (p<0.05). The A+M extract had a higher inhibitory effect on the growth of all cancer cells in comparison to MeOH extract. Among the fractions, the 85% aq. MeOH and n-hexane fractions showed a higher inhibitory effect after proliferating the three cancer cells. These results suggest that the 85% aq. MeOH and n-hexane fractions have a potential to inhibit the growth of human cancer cell lines.

Enhanced Anti-Cancer Effect of Snake Venom Activated NK Cells on Lung Cancer Cells by Inactivation of NF-κB

  • Kollipara, Pushpa Saranya;Won, Do Hee;Hwang, Chul Ju;Jung, Yu Yeon;Yoon, Heui Seoung;Park, Mi Hee;Song, Min Jong;Song, Ho Sueb;Hong, Jin Tae
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.106-113
    • /
    • 2014
  • In the present study, we investigated anti-cancer effect of snake venom activated NK cells (NK-92MI) in lung cancer cell lines. We used snake venom ($4{\mu}g/ml$) treated NK-92MI cells to co-culture with lung cancer cells. There was a further decrease in cancer cell growth up to 65% and 70% in A549 and NCI-H460 cell lines respectively, whereas 30-40% was decreased in cancer cell growth by snake venom or NK-92MI alone treatment. We further found that the expression of various apoptotic proteins such as that Bax, and cleaved caspase-3 as well as the expression of various death receptor proteins like DR3, DR4 and Fas was also further increased. Moreover, consistent with cancer cell growth inhibition, the DNA binding activity of NF-${\kappa}B$ was also further inhibited after treatment of snake venom activated NK-92MI cells. Thus, the present data showed that activated NK cells could further inhibit lung cancer cell growth.

Tumour Suppressive Effects of WEE1 Gene Silencing in Breast Cancer Cells

  • Ghiasi, Naghmeh;Habibagahi, Mojtaba;Rosli, Rozita;Ghaderi, Abbas;Yusoff, Khatijah;Hosseini, Ahmad;Abdullah, Syahrilnizam;Jaberipour, Mansooreh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6605-6611
    • /
    • 2013
  • Background: WEE1 is a G2/M checkpoint regulator protein. Various studies have indicated that WEE1 could be a good target for cancer therapy. The main aim of this study was to asssess the tumor suppressive potential of WEE1 silencing in two different breast cancer cell lines, MCF7 which carries the wild-type p53 and MDA-MB468 which contains a mutant type. Materials and Methods: After WEE1 knockdown with specific shRNAs downstream effects on cell viability and cell cycle progression were determined using MTT and flow cytometry analyses, respectively. Real-time PCR and Western blotting were conducted to assess the effect of WEE1 inhibition on the expression of apoptotic (p53) and anti-apoptotic (Bcl2) factors and also a growth marker (VEGF). Results: The results showed that WEE1 inhibition could cause a significant decrease in the viability of both MCF7 and MDA-MB-468 breast cancer cell lines by more than 50%. Interestingly, DNA content assays showed a significant increase in apoptotic cells following WEE1 silencing. WEE1 inhibition also induced upregulation of the apoptotic marker, p53, in breast cancer cells. A significant decrease in the expression of VEGF and Bcl-2 was observed following WEE1 inhibition in both cell lines. Conclusions: In concordance with previous studies, our data showed that WEE1 inhibition could induce G2 arrest abrogation and consequent cell death in breast cancer cells. Moreover, in this study, the observed interactions between the pro- and anti-apoptotic proteins and decrease in the angiogenesis marker expression confirm the susceptibility to apoptosis and validate the tumor suppressive effect of WEE1 inhibition in breast cancer cells. Interestingly, the levels of the sensitivity to WEE1 silencing in breast cancer cells, MCF7 and MDA-MB468, seem to be in concordance with the level of p53 expression.

Anticancer Effects of Curcuma C20-Dialdehyde against Colon and Cervical Cancer Cell Lines

  • Chaithongyot, Supattra;Asgar, Ali;Senawong, Gulsiri;Yowapuy, Anongnat;Lattmann, Eric;Sattayasai, Nison;Senawong, Thanaset
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6513-6519
    • /
    • 2015
  • Background: Recent attention on chemotherapeutic intervention against cancer has been focused on discovering and developing phytochemicals as anticancer agents with improved efficacy, low drug resistance and toxicity, low cost and limited adverse side effects. In this study, we investigated the effects of Curcuma C20-dialdehyde on growth, apoptosis and cell cycle arrest in colon and cervical cancer cell lines. Materials and Methods: Antiproliferative, apoptosis induction, and cell cycle arrest activities of Curcuma C20-dialdehyde were determined by WST cell proliferation assay, flow cytometric Alexa fluor 488-annexin V/propidium iodide (PI) staining and PI staining, respectively. Results: Curcuma C20 dialdehyde suppressed the proliferation of HCT116, HT29 and HeLa cells, with IC50 values of $65.4{\pm}1.74{\mu}g/ml$, $58.4{\pm}5.20{\mu}g/ml$ and $72.0{\pm}0.03{\mu}g/ml$, respectively, with 72 h exposure. Flow cytometric analysis revealed that percentages of early apoptotic cells increased in a dose-dependent manner upon exposure to Curcuma C20-dialdehyde. Furthermore, exposure to lower concentrations of this compound significantly induced cell cycle arrest at G1 phase for both HCT116 and HT29 cells, while higher concentrations increased sub-G1 populations. However, the concentrations used in this study could not induce cell cycle arrest but rather induced apoptotic cell death in HeLa cells. Conclusions: Our findings suggest that the phytochemical Curcuma C20-dialdehyde may be a potential antineoplastic agent for colon and cervical cancer chemotherapy and/or chemoprevention. Further studies are needed to characterize the drug target or mode of action of the Curcuma C20-dialdehyde as an anticancer agent.