• Title/Summary/Keyword: Cancellous type

Search Result 64, Processing Time 0.027 seconds

An Analysis of Stress Transfer Behaviors within the Necrotic Cancellous Bone following Surgical Procedures or the Management of the Osteonecrosis of the Femoral Head (대퇴골두 무혈성 괴사증의 수술적 기법 적용 후 괴사 망상골 내에서의 응력 변화 해석)

  • Kim, J.S.;Lee, S.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.245-248
    • /
    • 1997
  • Operative interventions for the management of osteonecrosis of the femoral head (ONFH) include core drilling, with or without vascularized fibular bone grafting. Nevertheless, their clinical results have not been consistently satisfactory. Recently, a new surgical procedure that incorporates cementation with polymethylmethacrylate (PMMA) after core drilling has been tried clinically. In this study, a biomechanical analysis using a finite element method(FEM) was undertaken to evaluate surgical methods and their underlying surgical parameter. Our finite element models included five types. They were (1) normal model (Type I), (2) necrotic model (Type II), (3) core decompressed model (Type III). (4) fibular bone grafted model (Type IV), and (5) cemented with PMMA model (Type V). The geometric dimensions of the femur were based on digitized CT-scan data of a normal person. Various physiological loading conditions and surgical penetration depths by the core were used as mechanical variables to study their biomechanical contributions in stress transfer within the femoral head region. In addition. the peak von Mises stress(PVMS) within the necrotic cancellous bone of the femoral head was obtained. The fibular bone grafted method and cementation method provided optimal stress transfer behaviors. Here. substantial increase in the low stress level was observed when the penetration depth was extended to 0mm and 5mm from the subchondral region. Moreover, significant decrease in PVMS due to surgery was observed in the fibular bone grafted method and the cementation method when the penetration depths were extended up to 0 and 5mm from the subchondral region. The drop in PVMS was greater during toe-off than during heel-strike (57% vs. 28% in Type IV and 49% vs. 22% in Type V). Both the vascularized fibular bone grafting method (Type IV) and the new PMMA technique (Type V) appear to be very effective in providing good stress transfer and reducing the peak Von-Mises stress within the necrotic region. Overall results show that fibular bone grafting and cementation methods are quite similar. In light of above results, the new cementation method appears to be a promising surgical alternative or the treatment of ONFH. The use of PMMA for the core can be less prone to surgical complication as opposed to preparation of fibular bone graft and can achieve more immediate fixation between the core and the surrounding region.

  • PDF

EFFECTS OF BONE ENGAGEMENT TYPE&IMPLANT LENGTH ON STRESS DISTRIBUTION: A THREE DIMENSIONAL FINITE ELEMENT ANALYSIS (임플란트 매식조건에 따른 상, 하악골의 응력분포 양상에 대한 3차원 유한요소분석 연구)

  • Choi, Jeong-Hwa;Seo, Ki-Youl;Choi, Joo-Ho;Han, Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.5
    • /
    • pp.687-697
    • /
    • 1999
  • A finite element analysis has been utilized to analyze stress and strain fields and design a new configuration in orthopedics and implant dentistry. Load transfer and stress analysis at implant bone interface are important factors from treatment planning to long term success. Bone configuration and quality are different according te anatomy of expecting implantation site. The purpose of this study was to compare the stress distribution in maxilla and mandible accord-ing to implant length and bone engagement types. A three dimensional axi-symmetric implant model(Nobel Biocare, Gothenburg, Sweden) with surrounding cortical and cancellous bone were designed to analyze the effects of bone engagement and implant length on stress distribution. ANSYS 5.5 finite element program was utilized as an interpreting toot. Three cases of unicortical anchorage model with 7, 10, 13 mm length and four cases of bicortical anchorage model with 5, 7, 10 and 13 mm length were compared both maxillary and mandibular single implant situation. Within the limits of study, following conclusions were drawn. 1. There is a difference in stress distribution according to cortical and cancellous bone thickness and shape. 2. Maximum stress was shown at the top of cortical bone area regardless of bone engagement types. 3. Bicortical engagement showed less stress accumulation when compared to unicortical case overall. 4. Longer the implant future length, less the stress on cortical bone area, however there is no difference in mandibular bicortical engagement case.

  • PDF

The Effects of Type of Rapid Palatal Expansion Appliance on the Circummaxillary Sutures : A 3D FEA study (급속 구개 확장 장치 종류가 상악골 주변 봉합에 미치는 영향에 대한 유한요소해석)

  • Kim, Yu-Wan;Moon, Yoon-Sik;Sung, Sang-Jin
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.15 no.2
    • /
    • pp.51-60
    • /
    • 2012
  • Craniofacial sutures absorb the stress transferred to skull. It was reported the cells of craniofacial sutures respond to exogenetic factors to be involved in growth control mechanism. In this study, we constructed a finite element model composed of cortical bone, cancellous bone, suture, PDL, and teeth by using CT images of a growing patient, simulating maxillary expansion to evaluate the effects of the thickness of sutures and type of maxillary expansion appliance on stress distribution in circummaxillary sutures.

  • PDF

Stress Analysis on the Splinted Conditions of the Two Implant Crowns with the Different Vertical Bone Level (치조골 높이가 다른 2개 임플란트 금관의 고정연결 조건에 따른 응력분석)

  • Jeon, Chang-Sik;Jeong, Sin-Young;Kang, Dong-Wan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.2
    • /
    • pp.169-182
    • /
    • 2005
  • The purpose of this study was to compare the stress distribution around the surrounding bone according to the splinted and non-splinted conditions on the finite element models of the two implant crowns with the different vertical bone level. The finite element model was designed with the parallel placement of the two fixtures ($4.0mm{\times}11.5mm$) with reverse buttress thread on the mandibular 1st and 2nd molars. As the bone quality, the inner cancellous bone and the outer 2 mm cortical bone were designed, and the cortical and cancellous bone were assumed to be perfectly bonded to the implant fixture. The splinted model(Model 1) had 2 mm contact surface and the non-splinted model(Model 2) had $8{\mu}m$ gap between two implant crowns. Two group (Splinted and non-splinted) was loaded with 200 N magnitude in the vertical and oblique directions on the loading point position on the central position of the crown, the 2 mm and 4 mm buccal offset point from the central position. Von Mises stress value was recorded and compared in the fixture-bone interface in the bucco-lingual and mesio-distal sections. The results were as follows; 1. In the vertical loading condition of central position, the stress was distributed on the cortical bone and the cancellous bone around the thread of the fixture in the splinted and non-splinted models. In the oblique loading condition, the stress was concentrated toward the cortical bone of the fixture neck, and the neck portion of 2nd molar in the non-splinted model was concentrated higher than that of 1st molar compared to the splinted model. 2. In the 2 mm buccal offset position of the vertical loading compared to the central vertical loading, stress pattern was shifted from apical third portion of the fixture to upper third portion of that. In the oblique loading condition, the stress was distributed over the fixture-bone interface. 3. In the 4 mm buccal offset position of the vertical loading, stress pattern was concentrated on the cortical bone around the buccal side of the fixture thread and shifted from apical third portion of the fixture to upper third portion of that in the splinted and non-splinted models. In the oblique loading, stresses pattern was distributed to the outer position of the neck portion of the fixture thread on the mesio-distal section in the splinted and non-splinted models. Above the results, it was concluded that the direction of loading condition was a key factor to effect the pattern and magnitude of stress over the surrounding bone of the fixture under the vertical and oblique loading conditions, although the type with or without proximal contact did not effect to the stress distribution.

THE EFFECT OF A CHITOSAN COATING OF DENTAL IMPLANT ON THE SHOCK ABSORPTION UNDER IMPACT TEST (키토산으로 표면처리된 인공치아의 충격전달에 관한 연구)

  • Kim, Ki-Hong;Lee, Yong-Chan;Cho, Byoung-Ouck;Choi, Kui-Won;Kwon, Ick-Chan;Bae, Tae-Soo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.1
    • /
    • pp.9-14
    • /
    • 2001
  • With the object of providing a temporary artificial periodonal ligament-like membrane around the dental implant, 10 Branemark type implants were coated with commercially available chitosan(Fluka Co., Buchs, Switzerland) which has a molecular weight of 70,000 and 80% deacetylation degree. Once this bioactive hydrophillic polymer(chitosan) contacts with blood or wound fluids, it becomes swollen and penetrates into the adjacent cancellous bone. Thus the interface between implant and surrounding bone is completely filled with chitosan. This tight junction in early healing phase enhances primary stability. The chitosan coated dental implants were implanted into the fresh patella bones from porcine knees, since the thickness of cortical bone is relatively even and their cancellous structure is homogenous. To test the shock absorbing effect, 1mm delta-rogette strain gage was installed behind the implant. The results showed 1. The principal strain peak value directed to the impact of coated implant was 0.064 0.018(p<0.05) and that of uncoated implant was 0.095(0.032 p<0.05). 2. The peak time delay of coated implant was 0.056sec(0.011 p<0.05) and that of uncoated implant was 0.024sec(0.009 p<0.05). It can be reasoned from this results that the chitosan coating has a shock absorbing effect comparable with a temporary artificial periodontal ligament.

  • PDF

STRESS DISTRIBUTION PATTERN OF THE DIFFERENT DIAMETER AND LENGTH OF SHORT IMPLANTS ACCORDING TO THE BONE QUALITY : 3-D FINITE ELEMENTS ANALYSIS (상이한 골질과 제원에 따른 짧은 임프란트의 응력 분포: 3차원 유한 요소 분석)

  • Kim, Han-Koo;Kim, Chang-Hyen;Pyo, Sung-Woon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.2
    • /
    • pp.116-126
    • /
    • 2009
  • The use of short implants has been accepted risky from biomechanical point of view. However, short implants appear to be a long term viable solution according to recent clinical reports. The purpose of this study was to investigate the effect of different diameter and length of implant size to the different type of bone on the load distribution pattern. Stress analysis was performed using 3-dimensional finite element analysis(3D-FEA). A three-dimensional linear elastic model was generated. All implants modeled were of the various diameter(${\phi}4.0$, 4.5, 5.0 and 6.0 mm) and varied in length, at 7.0, 8.5 and 10.0 mm. Each implant was modeled with a titanium abutment screw and abutment. The implants were seated in a supporting D2 and D4 bone structure consisting of cortical and cancellous bone. An amount of 100 N occlusal load of vertical and $30^{\circ}$ angle to axis of implant and to buccolingual plane were applied. As a result, the maximum equivalent stress of D2 and D4 bones has been concentrated upper region of cortical bone. As the width of implant is increased, the equivalent stress is decreased in cancellous bone and stress was more homogeneously distributed along the implants in all types of bone. The short implant of diameter 5.0mm, 6.0mm showed effective stress distribution in D2 and D4 bone. The oblique force of 100N generated more concentrated stress on the D2 cortical bone. Within the limitations of this study, the use of short implant may offer a predictable treatment method in the vertically restricted sites.

Shoulder Arthrodesis in Brachial Plexus Injury Patient (상완신경총 손상 환자에서 시행한 견관절고정술)

  • Han, Chung-Soo;Chung, Duke-Whan;Lee, Jae-Hoon;Jeong, Bi-O;Park, Hyun-Chul;Kim, Jin-Young;Song, Jong-Hoon;Seo, Jae-Wan
    • Archives of Reconstructive Microsurgery
    • /
    • v.18 no.2
    • /
    • pp.55-61
    • /
    • 2009
  • Purpose: To analyze the clinical and radiologic results of the shoulder arthrodesis in brachial plexus injury patients with flail upper extremity. Material and Method: From Aug 1978 to April 2008, 29 shoulders in 29 patients with brachial plexus injury with shoulder fusion, we evaluated 20 shoulders in 20 patients, more than 1 year follow up. The average follow-up period was 6.45years (range: 1year~24years). There were 13 men and 7 women, and the mean age at the time of trauma was 32.0years(2~65 years). The type of injury was a motorcycle accident in 11 patients, in car accident in 5, pedestrian accident in 3, and fall from a height in 1. The lesion of injury was root and trunk in 1 patient, trunk and cord in 1, trunk in 18. Surgery was performed on the whole arm type paralysis in 12 patients, lower arm type paralysis in 8 patients. The preoperative visual analog scale score was 8.7(7~10). When the trapezius and serratus anterior muscle were in function, operation was performed. 18 patients were processed to the additional operation. Gracilis free flap in 6 patients, neurotization in 3, Steindler flexor plasty in 6, and tendon transfer in 3 were performed. Fixation was conducted with cancellous screws in 13 patients, Knoles pins in 5, and cancellous screws and Knoles pins in 2. The position of the arthrodesis at operation was $28.5^{\circ}$($20~45^{\circ}$) in abduction, $30.3^{\circ}$($20~45^{\circ}$) in flexion, and $30.8^{\circ}$($20~40^{\circ}$) in internal rotation. Result: The follow up visual analog scale score was 3.4(0~7). Postoperatively, shoulder spica cast was applied for 15.3weeks(8-20weeks). The median time to bony union was 17.7weeks(9~28weeks). Average range of motion was $32.0^{\circ}$($15~40^{\circ}$) of abduction, $24.0^{\circ}$($10~40^{\circ}$) of flexion, and $18.5^{\circ}$($10~30^{\circ}$)of internal rotation. Conclusion: The shoulder fusion in brachial plexus injury patients is one of the good methods to relieve pain, improve the function and stabilize the flail shoulder joint.

  • PDF

Finite Element Analysis of a Newly Designed Screw Type Fixture for an Artificial Intervertebral Disc (새로운 방식의 나사형 인공디스크 고정체 해석)

  • Lim, Jong-Wan;Yang, Hyun-Ik
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.56-66
    • /
    • 2010
  • The various total replacement artificial discs have developed because spinal fusion has shown a lesser mobility of an operated segment and an accelerated degeneration at adjacent discs. But almost artificial discs have not yet been reached on the substitute surgery of fusion because many problems such as those clinical success rates were not more than them of fusion have not solved. In this paper, vertically inserted assemble-screw fixture in vertebrae was proposed to improve the fixed capability of artificial disc. And also, to evaluate the design suitability of newly designed screw-type, including fixtures of commercial discs such as wedge and plate type, the 1/4 finite element model with a vertebra and various implanted fixtures were generated, and next, 3 bending motions such as flexion, bending and twisting under the moment of 10Nm and compression under the force of 1000N were considered, respectively and finally, FE analyses were performed. Results of three fixture types were compared, such as Range of Motion and maximal stress, and so on. For ROM, the screw type was average 58% less than the wedge type and was average 42% less than the plate type under all loading conditions. For average stress ratio at closer nodes between vertebra and each fixture, the wedge type was the lowest as minimum 0.02 in twisting, screw types were the highest as maximum 0.28 in compression. As the results of using cement material, it was predicted that the instability problem of the wedge type was better solved. The screw type which could be increased by implanting depth according to the number of assembling mid screws, showed that the decreased tendency of ROMs and maximal cancellous bone stresses. In further study, controlling the number of assembling screws that was suitable for a patient's bone quality, development of surgical tools and keeping on design supplementations, which will be able to develop the competitive artificial disc.

Biomechanical Property of Dental Implants due to Chewing Force and Bone Properties. (저작력과 골질에 따른 치과용 임프란트의 생체 역학적 특성)

  • 손준희;채수원;권종진;한석환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1316-1319
    • /
    • 2003
  • The micromovements and stress distributions of cancellous bone in dental implant system play important roles in evaluating chewing function of an implant system. The micromovements and stress distributions in dental implant system generally depend on the chewing force and bone properties. Three dimensional nonlinear finite element analysis has been employed to investigate this issue quantitatively. Chewing forces and bone properties are classified into several groups and three types of implants involving one classical cylindrical type and two expandable implants are investigated in this paper.

  • PDF

Solitary peripheral osteomas of the jaws

  • Franca, Talita Ribeiro Tenorio De;Gueiros, Luiz Alcino Monteiro;Castro, Jurema Freire Lisboa De;Catunda, Ivson;Leao, Jair Carneiro;Perez, Danyel Elias Da Cruz
    • Imaging Science in Dentistry
    • /
    • v.42 no.2
    • /
    • pp.99-103
    • /
    • 2012
  • Osteoma is a benign osteogenic tumor composed of cancellous or compact bone, classified as peripheral, central, or extraskeletal. Peripheral osteomas are uncommon. Excluding the maxillary sinuses, the maxilla is a rare site for osteomas. The purpose of this report was to describe clinicopathological and radiological features of two peripheral osteomas occurring in the jaws, one located in the mandible and another in the edentulous maxillary alveolar ridge. The tumors were asymptomatic and were fully excised without any complications or recurrence. The lesions were submitted to histopathological analysis and diagnosed as peripheral osteoma, compact type.