• Title/Summary/Keyword: Camera-based Recognition

Search Result 593, Processing Time 0.028 seconds

A User Adaptation Method for Hand Shape Recognition Using Wrist-Mounted Camera (손목 부착형 카메라를 이용한 손 모양 인식에서의 사용자 적응 방법)

  • Park, Hyun;Shi, Hyo-Seok;Kim, Heon-Hui;Park, Kwang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.6
    • /
    • pp.805-814
    • /
    • 2013
  • This paper proposes a robust hand segmentation method using view-invariant characteristic of a wrist-mounted camera, and deals with a hand shape recognition system based on segmented hand information. We actively utilize the advantage of the proposed camera device that provides view-invariant images physically, and segment hand region using a Bayesian rule based on adaptive histograms. We construct HSV histograms from RGB histograms, and update HSV histograms using hand region information from a current image. We also propose a user adaptation method by which hand models gradually approach user-dependent models from user-independent models as the user uses the system. The proposed method was evaluated using 16 Korean manual alphabet, and we obtained increases of 27.91% in recognition success rate.

Recognition of Car Manufacturers using Faster R-CNN and Perspective Transformation

  • Ansari, Israfil;Lee, Yeunghak;Jeong, Yunju;Shim, Jaechang
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.888-896
    • /
    • 2018
  • In this paper, we report detection and recognition of vehicle logo from images captured from street CCTV. Image data includes both the front and rear view of the vehicles. The proposed method is a two-step process which combines image preprocessing and faster region-based convolutional neural network (R-CNN) for logo recognition. Without preprocessing, faster R-CNN accuracy is high only if the image quality is good. The proposed system is focusing on street CCTV camera where image quality is different from a front facing camera. Using perspective transformation the top view images are transformed into front view images. In this system, the detection and accuracy are much higher as compared to the existing algorithm. As a result of the experiment, on day data the detection and recognition rate is improved by 2% and night data, detection rate improved by 14%.

Design of an IOT System based on Face Recognition Technology using ESP32-CAM

  • Mahmoud, Ines;Saidi, Imen;bouzazi, Chadi
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.1-6
    • /
    • 2022
  • In this paper, we will present the realization of a facial recognition system using the ESP32-CAM board controlled by an Arduino board. The goal is to monitor a remote location in real time via a camera that is integrated into the ESP32 IOT board. The acquired images will be recorded on a memory card and at the same time transmitted to a pc (a web server). The development of this remote monitoring system is to create an alternative between security, reception, and transmission of information to act accordingly. The simulation results of our proposed application of the facial recognition domain are very efficient and satisfying in real time.

An Object Recognition Method Based on Depth Information for an Indoor Mobile Robot (실내 이동로봇을 위한 거리 정보 기반 물체 인식 방법)

  • Park, Jungkil;Park, Jaebyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.958-964
    • /
    • 2015
  • In this paper, an object recognition method based on the depth information from the RGB-D camera, Xtion, is proposed for an indoor mobile robot. First, the RANdom SAmple Consensus (RANSAC) algorithm is applied to the point cloud obtained from the RGB-D camera to detect and remove the floor points. Next, the removed point cloud is classified by the k-means clustering method as each object's point cloud, and the normal vector of each point is obtained by using the k-d tree search. The obtained normal vectors are classified by the trained multi-layer perceptron as 18 classes and used as features for object recognition. To distinguish an object from another object, the similarity between them is measured by using Levenshtein distance. To verify the effectiveness and feasibility of the proposed object recognition method, the experiments are carried out with several similar boxes.

A Study on Face Recognition on an UMPC (UMPC 환경에서의 얼굴인식 연구)

  • Nam, Gi-Pyo;Kang, Byung-Jun;Jeong, Dae-Sik;Park, Kang-Ryoung
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.831-832
    • /
    • 2008
  • This paper proposes the experimental results and analysis of face recognition on an conventional UMPC(Ultra Mobile Personal Computer). With face images acquired by the embedded camera of UMPC, we detected the facial region by using Adaboost face detector. The detected image was normalized into a $32{\times}32$ pixel sized image for face recognition. We performed face recognition based on PCA (Principal Component Analysis). As experimental results, the TER (Total Error Rate) of face recognition was 19.77%.

  • PDF

Multiple Human Recognition for Networked Camera based Interactive Control in IoT Space

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.1
    • /
    • pp.39-45
    • /
    • 2019
  • We propose an active color model based method for tracking motions of multiple human using a networked multiple-camera system in IoT space as a human-robot coexistent system. An IoT space is a space where many intelligent devices, such as computers and sensors(color CCD cameras for example), are distributed. Human beings can be a part of IoT space as well. One of the main goals of IoT space is to assist humans and to do different services for them. In order to be capable of doing that, IoT space must be able to do different human related tasks. One of them is to identify and track multiple objects seamlessly. In the environment where many camera modules are distributed on network, it is important to identify object in order to track it, because different cameras may be needed as object moves throughout the space and IoT space should determine the appropriate one. This paper describes appearance based unknown object tracking with the distributed vision system in IoT space. First, we discuss how object color information is obtained and how the color appearance based model is constructed from this data. Then, we discuss the global color model based on the local color information. The process of learning within global model and the experimental results are also presented.

Controlling Slides using Hand tracking and Gesture Recognition (손의 추적과 제스쳐 인식에 의한 슬라이드 제어)

  • Fayyaz, Rabia;Rhee, Eun Joo
    • Annual Conference of KIPS
    • /
    • 2012.04a
    • /
    • pp.436-439
    • /
    • 2012
  • The work is to the control the desktop Computers based on hand gesture recognition. This paper is worked en real time tracking and recognizes the hand gesture for controlling the slides based on hand direction such as right and left using a real time camera.

Object Recognition-based Global Localization for Mobile Robots (이동로봇의 물체인식 기반 전역적 자기위치 추정)

  • Park, Soon-Yyong;Park, Mignon;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.33-41
    • /
    • 2008
  • Based on object recognition technology, we present a new global localization method for robot navigation. For doing this, we model any indoor environment using the following visual cues with a stereo camera; view-based image features for object recognition and those 3D positions for object pose estimation. Also, we use the depth information at the horizontal centerline in image where optical axis passes through, which is similar to the data of the 2D laser range finder. Therefore, we can build a hybrid local node for a topological map that is composed of an indoor environment metric map and an object location map. Based on such modeling, we suggest a coarse-to-fine strategy for estimating the global localization of a mobile robot. The coarse pose is obtained by means of object recognition and SVD based least-squares fitting, and then its refined pose is estimated with a particle filtering algorithm. With real experiments, we show that the proposed method can be an effective vision- based global localization algorithm.

  • PDF

The Long Distance Face Recognition using Multiple Distance Face Images Acquired from a Zoom Camera (줌 카메라를 통해 획득된 거리별 얼굴 영상을 이용한 원거리 얼굴 인식 기술)

  • Moon, Hae-Min;Pan, Sung Bum
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.6
    • /
    • pp.1139-1145
    • /
    • 2014
  • User recognition technology, which identifies or verifies a certain individual is absolutely essential under robotic environments for intelligent services. The conventional face recognition algorithm using single distance face image as training images has a problem that face recognition rate decreases as distance increases. The face recognition algorithm using face images by actual distance as training images shows good performance but this has a problem that it requires user cooperation. This paper proposes the LDA-based long distance face recognition method which uses multiple distance face images from a zoom camera for training face images. The proposed face recognition technique generated better performance by average 7.8% than the technique using the existing single distance face image as training. Compared with the technique that used face images by distance as training, the performance fell average 8.0%. However, the proposed method has a strength that it spends less time and requires less cooperation to users when taking face images.

A Study on Smart Tourism Based on Face Recognition Using Smartphone

  • Ryu, Ki-Hwan;Lee, Myoung-Su
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.39-47
    • /
    • 2016
  • This study is a smart tourism research based on face recognition applied system that manages individual information of foreign tourists to smartphone. It is a way to authenticate by using face recognition, which is biometric information, as a technology applied to identification inquiry, immigration control, etc. and it is designed so that tourism companies can provide customized service to customers by applying algorism to smartphone. The smart tourism system based on face recognition is a system that prepares the reception service by sending the information to smartphone of tourist service company guide in real time after taking faces of foreign tourists who enter Korea for the first time with glasses attached to the camera. The smart tourism based on face recognition is personal information recognition technology, speech recognition technology, sensing technology, artificial intelligence personal information recognition technology, etc. Especially, artificial intelligence personal information recognition technology is a system that enables the tourism service company to implement the self-promotion function to commemorate the visit of foreign tourists and that enables tourists to participate in events and experience them directly. Since the application of smart tourism based on face recognition can utilize unique facial data and image features, it can be beneficially utilized for service companies that require accurate user authentication and service companies that prioritize security. However, in terms of sharing information by government organizations and private companies, preemptive measures such as the introduction of security systems should be taken.