• Title/Summary/Keyword: Camera pulse detection

Search Result 17, Processing Time 0.03 seconds

Defect Detection of Ceramic Heating Plate Using Ultrasound Pulse Thermography (초음파 펄스 서모그라피를 이용한 세라믹 전열 판의 결함 검출)

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho;Jung, Hyun-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.259-263
    • /
    • 2006
  • The applicability of UPT (Ultrasound Pulse Thermography) for real-time defect detection of the ceramic heating plate is described. The ceramic heating plate with superior insulation and high radiation is used to control the water temperature in underwater environment. The underwater temperature control system can be damaged owing to the short circuit, which resulted from the defect of the ceramic heating plate. A high power ultrasonic energy with pulse duration of 280 ms was injected into the ceramic heating plate in the vertical direction. The ultrasound excited vibration energy sent into the component propagate inside the sample until they were converted to the heat in the vicinity of the defect. Therefore, an injection of the ultrasound pulse wave which results in heat generation, turns the defect into a local thermal wave transmitter. Its local emission is monitored and recorded via the thermal infrared camera at the surface which is processed by image recording system. Measurements were Performed on 4 kinds of samples, composed of 3 intact plates and the defect plate. The observed thermal image revealed two area of crack in the defective ceramic heating plate.

Development of a Sleep-driving Accident Prevention System based on pulse

  • Bae, Seung-Woo;Seo, Jung-Hwa
    • Korean Journal of Artificial Intelligence
    • /
    • v.6 no.1
    • /
    • pp.11-15
    • /
    • 2018
  • The purpose of this study is to develop a pulsatile drowsiness detection system that can compensate the limitations of existing camera - based or breathing pressure sensor based Drowsiness driving prevention systems. A heart rate sensor mounted on the driver's finger and an alarm system that sounds when drowsiness is detected. The heart rate sensor was used to measure pulse changes in the wrist, and an alarm system based on the Arduino, which works in conjunction with the laptop, generates an audible alarm in the event of drowsiness. In this paper, we assume that the pulse rate of the drowsy state is 60 ~ 65 times / minute, which is the middle between the awake state and the sleep state. As a result of the experiment, the alarm sounded when the driver's pulse rate was in the drowsy pulse rate range. Based on these experiments, the drowsiness detection system was able to detect the drowsiness of the driver successfully in real time. A more effective drowsiness prevention system can be developed in the future by incorporating the results of the present study on a pulse-based drowsiness prevention system in an existing drowsiness prevention system.

Extracting Heart Rate Variability from a Smartphone Camera

  • Lenskiy, Artem A.;Aitzhan, Yerlan
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.3
    • /
    • pp.216-222
    • /
    • 2013
  • It is known that blood circulation in human body causes the skin tone to change concurrently with heartbeats. A number of apps have been developed to measure the heartbeat using smartphone camera; however, no any further analysis is performed. In this paper we propose an algorithm that detects heartbeats from the phone's camera and further extracts the heart rate variability (HRV). We compare the HRV extracted from the camera with the HRV extracted from the electrocardiogram. We estimated a number of commonly used HRV characteristics and compared them. Our results show that smartphone camera leads to slightly overestimated characteristics although the difference in extracted HRV signals is negligible. As a consequence we suggest that a smartphone camera can be employed in a quick heart diagnosis and diagnosis of autonomic nervous system.

Standoff Raman Spectroscopic Detection of Explosive Molecules

  • Chung, Jin Hyuk;Cho, Soo Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1668-1672
    • /
    • 2013
  • We developed a standoff Raman detection system for explosive molecules (EMs). Our system was composed of reflective telescope with 310 mm diameter lens, 532 nm pulse laser, and Intensified Charge-Coupled Device (ICCD) camera. In order to remove huge background noise coming from ambient light, laser pulses with nanosecond time width were fired to target sample and ICCD was gated to open only during the time when the scattered Raman signal from the sample arrived at ICCD camera. We performed standoff experiments with military EMs by putting the detector at 10, 20 and 30 m away from the source. The standoff results were compared with the confocal Raman results. Based on our standoff experiments, we were able to observe the peaks in the range of 1200 and $1600cm^{-1}$, where vibrational modes of nitro groups were appeared. The wave numbers and shapes of these peaks may serve as good references in detecting and identifying various EMs.

Transition-based Data Decoding for Optical Camera Communications Using a Rolling Shutter Camera

  • Kim, Byung Wook;Lee, Ji-Hwan;Jung, Sung-Yoon
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.422-430
    • /
    • 2018
  • Rolling shutter operation of CMOS cameras can be utilized in optical camera communications in order to transmit data from an LED to mobile devices such as smart-phones. From temporally modulated light, a spatial flicker pattern is obtained in the captured image, and this is used for signal recovery. Due to the degradation of rolling shutter images caused by light smear, motion blur, and focus blur, the conventional decoding schemes for rolling shutter cameras based on the pattern width for 'OFF' and 'ON' cannot guarantee robust communications performance for practical uses. Aside from conventional techniques, such as polynomial fitting, histogram equalization can be used for blurry light mitigation, but it requires additional computation abilities resulting in burdens on mobile devices. This paper proposes a transition-based decoding scheme for rolling shutter cameras in order to offer simple and robust data decoding in the presence of image degradation. Based on the designed synchronization pulse and modulated data symbols according to the LED dimming level, the decoding process is conducted by observing the transition patterns of two sequential symbol pulses. For this, the extended symbol pulse caused by consecutive symbol pulses with the same level determines whether the second pulse should be included for the next bit decoding or not. The proposed method simply identifies the transition patterns of sequential symbol pulses other than the pattern width of 'OFF' and 'ON' for data decoding, and thus, it is simpler and more accurate. Experimental results ensured that the transition-based decoding scheme is robust even in the presence of blurry lights in the captured image at various dimming levels

Remote Monitoring of Patients and Emergency Notification System for U-Healthcare

  • Lee, Jun;Jang, Hyun-Se;Yang, Tae-Kyu;Seo, Yong-Ho
    • International journal of advanced smart convergence
    • /
    • v.2 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • This study proposes a remote monitoring of patients and emergency notification system with a camera and pulse wave sensor for U-Healthcare. The proposed system is a server client model based U-Healthcare system which consists of wireless clients that have micro-controller, embedded-board for patient status monitoring and a remote management server. The remote management server observes the change of pulse wave data individually in real-time sent from the clients that is to be remote-monitored based on the pulse wave data stored by users and divides them into caution section and emergency section. When the pulse wave data of a user enters an emergency situation, the administrator can make a decision based on the real-time image information and pulse rate variability. When the status of the monitored patient enters the emergency section, the proposed U-healthcare system notifies the administrator and relevant institutions. An experiment was conducted to demonstrate the pulse wave recognition of the proposed system.

Nanosecond Gated Raman Spectroscopy for Standoff Detection of Hazardous Materials

  • Chung, Jin Hyuk;Cho, Soo Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3547-3552
    • /
    • 2014
  • Laser Raman spectroscopy is one of the most powerful technologies for standoff detection of hazardous materials including explosives. Supported by recent development of laser and sensitive ICCD camera, the technology can identify trace amount of unknown substances in a distance. Using this concept, we built a standoff detection system, in which nanosecond pulse laser and nanosecond gating ICCD technique were delicately devised to avoid the large background noise which suppressed weak Raman signals from the target sample. In standoff detection of explosives which have large kill radius, one of the most important technical issues is the detection distance from the target. Hence, we focused to increase the detection distance up to 54 m by careful optimization of optics and laser settings. The Raman spectra of hazardous materials observed at the distance of 54 m were fully identifiable. We succeeded to detect and identify eleven hazardous materials of liquid or solid particles, which were either explosives or chemical substances used frequently in chemical plants. We also performed experiments to establish the limit of detection (LOD) of HMX at 10 m, which was estimated to be 6 mg.

A Welding Defect Inspection using an Ultrasound Excited Thermography (초음파 서모그라피를 이용한 용접 결함 검사)

  • Jo Jae-Wan;Jeong Jin-Man;Choi Yeong-Su;Jeong Seung-Ho;Jeong Hyeon-Gyu
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.148-150
    • /
    • 2006
  • In this paper, the applicability of an UET(ultrasound excited thermography) for a defect detection of the welded receptacle is described. An UET(ultrasound excited thermography) is a defect-selective and fast imaging tool for damage detection. A high power ultrasound-excited vibration energy with pulse durations of 280ms is injected into the outer surface of the welded receptacle made of Al material. An ultrasound vibration energy sent into the welded receptacle propagate inside the sample until they are converted into the heat in the vicinity of the defect. The injection of the ultrasound excited vibration energy results in heat generation so that the defect is turned into a local thermal wave transmitter. Its local heat emission is monitored by the thermal infrared camera. And they are processed by the image recording system. Measurement was performed on aluminum receptacle welded by using Nd:YAG laser. The observed thermal image revealed two area of defects along the welded seam.

  • PDF

A Defect Detection of Thin Welded Plate using an Ultrasonic Infrared Imaging (초음파 열화상 검사를 이용한 박판 용접시편의 결함 검출)

  • Cho, Jai-Wan;Chung, Chin-Man;Choi, Young-Soo;Jung, Seung-Ho;Jung, Hyun-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1060-1066
    • /
    • 2007
  • When a high-energy ultrasound propagates through a solid body that contains a crack or a delamination, the two faces of the defect do not ordinarily vibrate in unison, and dissipative phenomena such as friction, rubbing and clapping between the faces will convert some of the vibrational energy to heat. By combining this heating effect with infrared imaging, one can detect a subsurface defect in material efficiently. In this paper a detection of the welding defect of thin SUS 304 plates using the UIR (ultrasonic infrared imaging) technology is described. A low frequency (20kHz) ultrasonic transducer was used to infuse the welded thin SUS 304 plates with a short pulse of sound for 280ms. The ultrasonic source has a maximum power of 2kW. The surface temperature of the area under inspection is imaged by a thermal infrared camera that is coupled to a fast frame grabber in a computer. The hot spots, which are a small area around the defect tip and heated up highly, are observed. From the sequence of the thermosonic images, the location of defective or inhomogeneous regions in the welded thin SUS 304 plates can be detected easily.

Face Recognition and Notification System for Visually Impaired People (시각장애인을 위한 얼굴 인식 및 알림 시스템)

  • Jin, Yongsik;Lee, Minho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.1
    • /
    • pp.35-41
    • /
    • 2017
  • We propose a face recognition and notification system that can transform visual face information into tactile signals in order to help visually impaired people. The proposed system consists of a glasses type camera, a mobile computer and an electronic cane. The glasses type camera captures the frontal view of the user, and sends this image to mobile computer. The mobile computer starts to search for human's face in the image when obstacles are detected by ultrasonic sensors. In a case that human's face is detected, the mobile computer identifies detected face. At this time, Adaboost and compressive sensing are used as a detector and a classifier, respectively. After the identification procedures of the detected face, the identified face information is sent to controller attached to a cane using a Bluetooth communication. The controller generates motor control signals using Pulse Width Modulation (PWM) according to the recognized face labels. The vibration motor generates vibration patterns to inform the visually impaired person of the face recognition result. The experimental results of face recognition and notification system show that proposed system is helpful for visually impaired people by providing person identification results in front of him/her.