• Title/Summary/Keyword: Camera model

Search Result 1,502, Processing Time 0.032 seconds

Threshold-Based Camera Motion Characterization of MPEG Video

  • Kim, Jae-Gon;Chang, Hyun-Sung;Kim, Jin-Woong;Kim, Hyung-Myung
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.269-272
    • /
    • 2004
  • We propose an efficient scheme for camera motion characterization in MPEG-compressed video. The proposed scheme detects six types of basic camera motions through threshold-based qualitative interpretation, in which fixed thresholds are applied to motion model parameters estimated from MPEG motion vectors (MVs). The efficiency and robustness of the scheme are validated by the experiment with real compressed video sequences.

  • PDF

3 Dimensional Object Reconstruction Using Zoom Camera (줌 카메라를 이용한 3차원 물체 재구성)

  • 주도완;김주영기수용고광식
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.927-930
    • /
    • 1998
  • This paper presents a new method for reconstructing 3 dimensional object model using a zoom camera. The proposed method uses zoom images to find the distance(D) between camera and object. Also the method uses images obtained around the object to find an $angle(\theta)$ between two connected planes of the object. With the D and $\theta,$ we can reconstruct the real sized 3-D model of object with less errors without stereo camera or rangefinder.

  • PDF

Determination of the CTQ of Digital Camera Integrating Kano model & AHP (AHP와 Kano 모델 통합에 의한 디지털 카메라의 핵심품질특성 결정)

  • Cho, Tae-Yeon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.04a
    • /
    • pp.359-369
    • /
    • 2010
  • In order to find out the customer requirements and to develop new products more effectively, the Kano model and QFD(Quality Function Deployment), AHP(Analytic Hierarchy Process) developed and applied. But, Many companies difficult to select the CTQ(Critical to Quality) of new product. Especially the life cycle of Digital Camera is very short. In this thesis, the Kano model and AHP(Analytic Hierarchy Process) for finding the CTQ(Critical to Quality) for customer satisfaction are suggested. It is explained and discussed with the example of Digital Camera.

  • PDF

Parameter Calibration of Laser Scan Camera for Measuring the Impact Point of Arrow (화살 탄착점 측정을 위한 레이저 스캔 카메라 파라미터 보정)

  • Baek, Gyeong-Dong;Cheon, Seong-Pyo;Lee, In-Seong;Kim, Sung-Shin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.76-84
    • /
    • 2012
  • This paper presents the measurement system of arrow's point of impact using laser scan camera and describes the image calibration method. The calibration process of distorted image is primarily divided into explicit and implicit method. Explicit method focuses on direct optical property using physical camera and its parameter adjustment functionality, while implicit method relies on a calibration plate which assumed relations between image pixels and target positions. To find the relations of image and target position in implicit method, we proposed the performance criteria based polynomial theorem model that overcome some limitations of conventional image calibration model such as over-fitting problem. The proposed method can be verified with 2D position of arrow that were taken by SICK Ranger-D50 laser scan camera.

Recognition of Model Cars Using Low-Cost Camera in Smart Toy Games (저가 카메라를 이용한 스마트 장난감 게임을 위한 모형 자동차 인식)

  • Minhye Kang;Won-Kee Hong;Jaepil Ko
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.27-32
    • /
    • 2024
  • Recently, there has been a growing interest in integrating physical toys into video gaming within the game content business. This paper introduces a novel method that leverages low-cost camera as an alternative to using sensor attachments to meet this rising demand. We address the limitations associated with low-cost cameras and propose an optical design tailored to the specific environment of model car recognition. We overcome the inherent limitations of low-cost cameras by proposing an optical design specifically tailored for model car recognition. This approach primarily focuses on recognizing the underside of the car and addresses the challenges associated with this particular perspective. Our method employs a transfer learning model that is specifically trained for this task. We have achieved a 100% recognition rate, highlighting the importance of collecting data under various camera exposures. This paper serves as a valuable case study for incorporating low-cost cameras into vision systems.

An Analysis of Radiative Observation Environment for Korea Meteorological Administration (KMA) Solar Radiation Stations based on 3-Dimensional Camera and Digital Elevation Model (DEM) (3차원 카메라와 수치표고모델 자료에 따른 기상청 일사관측소의 복사관측환경 분석)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae;Jo, Ji-Young
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.537-550
    • /
    • 2019
  • To analyze the observation environment of solar radiation stations operated by the Korea Meteorological Administration (KMA), we analyzed the skyline, Sky View Factor (SVF), and solar radiation due to the surrounding topography and artificial structures using a Digital Elevation Model (DEM), 3D camera, and solar radiation model. Solar energy shielding of 25 km around the station was analyzed using 10 m resolution DEM data and the skyline elevation and SVF were analyzed by the surrounding environment using the image captured by the 3D camera. The solar radiation model was used to assess the contribution of the environment to solar radiation. Because the skyline elevation retrieved from the DEM is different from the actual environment, it is compared with the results obtained from the 3D camera. From the skyline and SVF calculations, it was observed that some stations were shielded by the surrounding environment at sunrise and sunset. The topographic effect of 3D camera is therefore more than 20 times higher than that of DEM throughout the year for monthly accumulated solar radiation. Due to relatively low solar radiation in winter, the solar radiation shielding is large in winter. Also, for the annual accumulated solar radiation, the difference of the global solar radiation calculated using the 3D camera was 176.70 MJ (solar radiation with 7 days; suppose daily accumulated solar radiation 26 MJ) on an average and a maximum of 439.90 MJ (solar radiation with 17.5 days).

Calibration of Omnidirectional Camera by Considering Inlier Distribution (인라이어 분포를 이용한 전방향 카메라의 보정)

  • Hong, Hyun-Ki;Hwang, Yong-Ho
    • Journal of Korea Game Society
    • /
    • v.7 no.4
    • /
    • pp.63-70
    • /
    • 2007
  • Since the fisheye lens has a wide field of view, it can capture the scene and illumination from all directions from far less number of omnidirectional images. Due to these advantages of the omnidirectional camera, it is widely used in surveillance and reconstruction of 3D structure of the scene In this paper, we present a new self-calibration algorithm of omnidirectional camera from uncalibrated images by considering the inlier distribution. First, one parametric non-linear projection model of omnidirectional camera is estimated with the known rotation and translation parameters. After deriving projection model, we can compute an essential matrix of the camera with unknown motions, and then determine the camera information: rotation and translations. The standard deviations are used as a quantitative measure to select a proper inlier set. The experimental results showed that we can achieve a precise estimation of the omnidirectional camera model and extrinsic parameters including rotation and translation.

  • PDF

Rigorous Modeling of the First Generation of the Reconnaissance Satellite Imagery

  • Shin, Sung-Woong;Schenk, Tony
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.3
    • /
    • pp.223-233
    • /
    • 2008
  • In the mid 90's, the U.S. government released images acquired by the first generation of photo reconnaissance satellite missions between 1960 and 1972. The Declassified Intelligent Satellite Photographs (DISP) from the Corona mission are of high quality with an astounding ground resolution of about 2 m. The KH-4A panoramic camera system employed a scan angle of $70^{\circ}$ that produces film strips with a dimension of $55\;mm\;{\times}\;757\;mm$. Since GPS/INS did not exist at the time of data acquisition, the exterior orientation must be established in the traditional way by using control information and the interior orientation of the camera. Detailed information about the camera is not available, however. For reconstructing points in object space from DISP imagery to an accuracy that is comparable to high resolution (a few meters), a precise camera model is essential. This paper is concerned with the derivation of a rigorous mathematical model for the KH-4A/B panoramic camera. The proposed model is compared with generic sensor models, such as affine transformation and rational functions. The paper concludes with experimental results concerning the precision of reconstructed points in object space. The rigorous mathematical panoramic camera model for the KH-4A camera system is based on extended collinearity equations assuming that the satellite trajectory during one scan is smooth and the attitude remains unchanged. As a result, the collinearity equations express the perspective center as a function of the scan time. With the known satellite velocity this will translate into a shift along-track. Therefore, the exterior orientation contains seven parameters to be estimated. The reconstruction of object points can now be performed with the exterior orientation parameters, either by intersecting bundle rays with a known surface or by using the stereoscopic KH-4A arrangement with fore and aft cameras mounted an angle of $30^{\circ}$.

Moving Object Detection Using SURF and Label Cluster Update in Active Camera (SURF와 Label Cluster를 이용한 이동형 카메라에서 동적물체 추출)

  • Jung, Yong-Han;Park, Eun-Soo;Lee, Hyung-Ho;Wang, De-Chang;Huh, Uk-Youl;Kim, Hak-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.35-41
    • /
    • 2012
  • This paper proposes a moving object detection algorithm for active camera system that can be applied to mobile robot and intelligent surveillance system. Most of moving object detection algorithms based on a stationary camera system. These algorithms used fixed surveillance system that does not consider the motion of the background or robot tracking system that track pre-learned object. Unlike the stationary camera system, the active camera system has a problem that is difficult to extract the moving object due to the error occurred by the movement of camera. In order to overcome this problem, the motion of the camera was compensated by using SURF and Pseudo Perspective model, and then the moving object is extracted efficiently using stochastic Label Cluster transport model. This method is possible to detect moving object because that minimizes effect of the background movement. Our approach proves robust and effective in terms of moving object detection in active camera system.

Camera Model Identification Based on Deep Learning (딥러닝 기반 카메라 모델 판별)

  • Lee, Soo Hyeon;Kim, Dong Hyun;Lee, Hae-Yeoun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.10
    • /
    • pp.411-420
    • /
    • 2019
  • Camera model identification has been a subject of steady study in the field of digital forensics. Among the increasingly sophisticated crimes, crimes such as illegal filming are taking up a high number of crimes because they are hard to detect as cameras become smaller. Therefore, technology that can specify which camera a particular image was taken on could be used as evidence to prove a criminal's suspicion when a criminal denies his or her criminal behavior. This paper proposes a deep learning model to identify the camera model used to acquire the image. The proposed model consists of four convolution layers and two fully connection layers, and a high pass filter is used as a filter for data pre-processing. To verify the performance of the proposed model, Dresden Image Database was used and the dataset was generated by applying the sequential partition method. To show the performance of the proposed model, it is compared with existing studies using 3 layers model or model with GLCM. The proposed model achieves 98% accuracy which is similar to that of the latest technology.