• Title/Summary/Keyword: Camera constant

Search Result 180, Processing Time 0.026 seconds

Simulation of Wood Crib Burning Behaviors by Using FDS (FDS를 이용한 소화모형 화재거동의 시뮬레이션)

  • Kwon, Seong-Pil;Yoon, Hun-Ju;Kim, Hyeong-Gweon;Ra, Yong-Woon;SaKong, Seong-Ho;Shin, Dong-Il
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.76-79
    • /
    • 2008
  • In this work wood crib burning behaviors have been simulated by using the FDS(Fire Dynamic Simulator) program. Wood cribs are regularly stacked arrays of wood sticks, and available for the performance rating of fire-extinguishers. On the basis of an angle iron supporter 26 layers of wood sticks have been stacked up. Each layer consists of 5 or 6 wood sticks which are placed in parallel, with a constant distance, and in alternating rows. They are laid between the horizontally adjacent sticks at the before last layer. The wood crib is ignited instantaneously by an amount of burning gasoline below. A comprehensive simulation of such a practical sophisticated combustion is still too difficult to realize with any currently available computer, although the performance of modern processors is getting better everyday. We could carry it out here through parallel computing on the HPC(High Performance Computing) cluster as the feasible alternative. At last the validation has been executed by means of temperature distribution data measured by the thermal video camera.

  • PDF

Image Based 3D Reconstruction of Texture-less Objects for VR Contents

  • Hafeez, Jahanzeb;Lee, Seunghyun;Kwon, Soonchul;Hamacher, Alaric
    • International journal of advanced smart convergence
    • /
    • v.6 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • Recent development in virtual and augmented reality increases the demand for content in many different fields. One of the fast ways to create content for VR is 3D modeling of real objects. In this paper we propose a system to reconstruct three-dimensional models of real objects from the set of two-dimensional images under the assumption that the subject does not has distinct features. We explicitly consider an object that is made of one or more surfaces and radiant constant energy isotropically. We design a low cost portable multi camera rig system that is capable of capturing images simultaneously from all cameras. In order to evaluate the performance of the proposed system, comparison is made between 3D model and a CAD model. A simple algorithm is also proposed to acquire original texture or color of the subject. Using best pattern found after the experiments, 3D model of the Pyeongchang Olympic Mascot "Soohorang" is created to use as VR content.

A Void Fraction Measurement Technique by Single Camera and Its Application (단일 카메라를 이용한 이상유동 기포율 측정방법의 개발과 응용)

  • Choi, Dong-Whan;Yoo, Jung-Yul;Song, Jin-Ho;Sung, Jae-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.904-911
    • /
    • 2007
  • A measurement technique fur void fraction has been proposed using a time-resolved two-phase PIV system and the bubble dynamics has been investigated in gas-liquid two-phase flows. For the three-dimensional evaluation of the bubble information, both the images from the front and side views are simultaneously recorded into a high speed CCD camera by reflecting the side view image on a $45^{\circ}$ oriented mirror to be juxtaposed with the front view image. Then, a stereo-matching technique is applied to calculate the void fraction, bubble size and shape. To obtain the rising bubble velocities, the 2-frame PTV method was adopted. The present technique is applied to freely rising bubby flows in stagnant liquid. The results show that the increase of bubble flow rate gives rise to the increase of bubble size and rising velocity at first. If it goes over a certain level, the rising velocity becomes constant and the horizontal velocity grows bigger instead due to the obstruction of other bubbles.

A Study on Development Process of Evaporating Diesel Spray (증발디젤분무의 발달 과정에 관한 연구)

  • Yeom, Jeong-Kuk;Park, Jong-Sang;Chung, Sung-Sik;Ha, Jong-Yul;Kim, Si-Pom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.141-146
    • /
    • 2007
  • In this study, the effects of change in ambient gas viscosity on spray structure have been investigated in the high temperature and pressure field. To analyze the structure of evaporative diesel spray is important in speculation of mixture formation process. Emissions of diesel engines can be reduced by the control of the mixture formation process. Therefore, this study examines the evaporating spray structure in the constant volume chamber. The viscosity of ambient gas was selected as the experimental parameter, is changed from 21.7 mPa s to 32.1 mPa s by changing in ambient gas temperature. In order to obtain images of the liquid and vapor-phase of injected spray, exciplex fluorescence method was used in this study. The liquid and vapor-phase images were taken with 35mm still camera and CCD camera, respectively. Consequentially, it could be confirmed that the distribution of vapor concentration is more uniform in the case of the ambient gas with high viscosity than in that of the ambient gas with low viscosity.

The study of the breakup mechanism of a liquid jet by using a high speed camera (고속도카메라에 의한 액주의 분열기구에 관한 연구)

  • 김덕줄;이충원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.708-716
    • /
    • 1989
  • The purpose of this study is to investigate the breakup mechanism of a liquid jet in a coaxial air flow. By using the high speed camera, measured were the instantaneous change of the wave length, amuplitude of disturbance, propagation velocity of wave and breakup length, and the relationships between those data were examined. The shape of the surface of the liquid jet appeared to be rather complicated and irregular. The growth rate of disturbance was not constant, and was changed at the moment of 3ms prior to the disintegration of the liquid jet. Simultaneously at this moment, the propagation velocities of the sequential waves were reversed and the wave length was rapidly decreased.

Dynamic Fracture Behavior of Some Polymeric Materials (고분자재료의 동적 파괴거동에 관한 연구)

  • 이억섭;한정우;한문식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1630-1641
    • /
    • 1995
  • The dynamic stress intensity factors (DSIF ; $K_{I}$$^{dyn}$) were studied in some polymeric materials using caustics method with a high speed camera system. Also crack tip propagation speed was measured by dynamic crack propagation velocity measuring device. To calculate DSIF a finite element analysis program-INha Stress Analysis Moving CRack(INSAMCR) was utilized. Dynamic fracture characteristics were investigated to verify a relationship between DSIF and crack tip propagation speed and acceleration in PMMA, Homalite-100 and Polycarbonate. The relationship between dynamic stress intensity factor and crack tip velocity revealed typical shapes. Measured crack tip acceleration data envelope converges to the zero level with increasing DSIF. Equivalently crack tip velocities show a wide spread range at low values of DSIF, but become a constant with a higher DSIF. $1.2MPa{\sqrt{m}}$, $1.4MPa{\sqrt{m}}$ and $1.3 MPa{\sqrt{m}}$ were obtained as $K_{I}$$^{dyn}$ values to arrest the dynamic crack for PMMA, Homalite-100 and Polycarbonate, respectively. INSAMCR was run to verify experimental results in PMMA and shows good agreementment.

Hardware Architecture of Automatic Exposure Algorithm for CMOS Image Sensor (CMOS Image Sensor용 자동노출 알고리즘의 하드웨어 구조)

  • Mo, Sung-Wook;Park, Hyun-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1497-1502
    • /
    • 2009
  • AE(Auto exposure) is a function to maintain the exposure value of a captured image constant, and is one of the crucial functionalities of a CIS-based mobile camera. Generally AE is implemented in software, requiring a CPU and a ROM to store the corresponding software. This approach increases the hardware size at the cost of increased flexibility. In this paper, we propose an AE algorithm featuring variable frame-rate and adaptive analog gain control, as well as a FSM-based hardware architecture for a CIS-based mobile camera.

Development of a Pixel-based Area Measurement Program Using Drone and Camera Module (카메라 모듈과 드론을 이용한 면적 자동 측정 프로그램 개발)

  • Kim, Jung Hwan;Kim, Shik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.3
    • /
    • pp.157-163
    • /
    • 2019
  • As the drone industry has grown greatly in recent years, drones are being used or developed in many industrial fields such as image shooting, pesticide application, delivery service, food delivery etc. In this paper, therefore, we developed a program that takes a user's desired area at a certain height using a camera-equipped drone and obtains the area of the zone the user wants through image processing. The first user selects an area or a path. Afterwards, the drone flies and takes pictures, and then measures the user's needs. A digital image taken at a constant height and with the same resolution is composed of pixels, the area can be calculated easily if we know the number of pixels in the zone the user wants. Particularly, it is easy to calculate the area of various shaped zones, not terrain shapes such as triangles and squares. In addition, the total area of specific places of the entire zone can be calculated. With the program of this paper, anyone can easily calculate the area of the place the user wants using a drone rather than calculating the area through difficult formulas or specialized equipment.

A Study on Measuring the Temperature and Revising the Result When Measuring the Temperature of NPP Pipes Using Infrared Thermography (적외선 열화상 기술을 이용한 원자력 배관의 온도측정과 보정에 관한 연구)

  • Kim, Kyeong-Suk;Jung, Hyun-Chul;Pack, Chan-Joo;Kim, Dong-Soo;Jung, Duk-Woon;Chang, Ho-Sub
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.421-426
    • /
    • 2009
  • The emissivity is different because the emitted angle changes according to the position of the infrared thermography camera and object. Because of this, the temperature distribution expressed when measuring the temperature by using the infrared thermography system is not the accuracy temperature. Although the real surface temperature is constant, the temperature measured by using infrared thermography camera have error in accordance with the value of emissivity. In this paper, the temperatures of the round cylindrical object and the flat square object that heated to the equal temperature were measured by infrared thermography camera. The emissivity calibration formula and correction table are made with the affect of the view angle and emission angle form the surface temperature value. The error of measured temperature values are corrected by using the emissivity calibration formula and correction table, and apply to defect detection of the nuclear power plant pipe. From the calibration method, reliability surface temperature values were obtained.

Electrical Resistivity Imaging for Upper Layer of Shield TBM Tunnel Ceiling (쉴드 TBM터널 상부 지반 연약대 전기탐사)

  • Jung, Hyun-Key;Park, Chul-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.401-408
    • /
    • 2005
  • Recently shield TBM tunnellings are being applied to subway construction in Korean cities. Generally these kinds of tunnellings have the problems in the stability of ground such as subsidence because urban subway is constructed in the shallow depth. A sinkhole occurred on the road just above the tunnel during tunneling in Kwangju, so a survey for upper layer of the tunnel was needed. But conventional Ground Probing Radar can't be applicable due to the presence of steel-mesh screen in the shield segment, so no existent geophysical method is applicable in this site. Because the outer surface of each shield segment is electrically insulated, dipole-dipole resistivity method which is popular in engineering site investigation, was tried to this survey for the first time. Specially manufactured flexible ring-type electrodes were installed into the grouting holes at an interval of 2.4 m on the ceiling. The K-Ohm II system which has been developed by KIGAM and tested successfully in many sites, was used in this site. The system consists of 1000Volt-1Ampere constant-current transmitter, optically isolated 24 bit sigma-delta A/D conversion receiver - maximum 12 channel simultaneous measurements, and graphical automatic acquisition software for easy data quality check in real time. Borehole camera logging with circular white LED lighting was also done to investigate the state of the layer. Measured resistivity data lack of some stations due to failing opening lids of holes, shows general high-low trend well. The dipole-dipole resistivity inversion results discriminate (1) one approximately 4 meter diameter cavity (grouted but incompletely hardened, so low resistivity - less than $30{\Omega}m$), (2) weak zone (100-200${\Omega}m$), and (3) hard zone (high resistivity - more than 1000${\Omega}m$) very well for the distance of 320 meters. The 2-D inversion neglects slight absolute 3-D effect, but we can get satisfactory and useful information. Acquired resistivity section and video tapes by borehole camera logging will be reserved and reused if some problem occurs in this site in the future.

  • PDF