• Title/Summary/Keyword: Camera characterization

Search Result 61, Processing Time 0.023 seconds

A Study on Color Management of Input and Output Device in Electronic Publishing (II) (전자출판에서 입.출력 장치의 컬러 관리에 관한 연구 (II))

  • Cho, Ga-Ram;Koo, Chul-Whoi
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.25 no.1
    • /
    • pp.65-80
    • /
    • 2007
  • The input and output device requires precise color representation and CMS (Color Management System) because of the increasing number of ways to apply the digital image into electronic publishing. However, there are slight differences in the device dependent color signal among the input and output devices. Also, because of the non-linear conversion of the input signal value to the output signal value, there are color differences between the original copy and the output copy. It seems necessary for device-dependent color information values to change into device-independent color information values. When creating an original copy through electronic publishing, there should be color management with the input and output devices. From the devices' three phases of calibration, characterization and color conversion, the device-dependent color should undergo a color transformation into a device-independent color. In this paper, an experiment was done where the input device used the linear multiple regression and the sRGB color space to perform a color transformation. The output device used the GOG, GOGO and sRGB for the color transformation. After undergoing a color transformation in the input and output devices, the best results were created when the original target underwent a color transformation by the scanner and digital camera input device by the linear multiple regression, and the LCD output device underwent a color transformation by the GOG model.

  • PDF

Image Enhancement Algorithm in Imaging Systems for Electronic Photography (전자사진용 화상시스템의 화상개선 알고리즘)

  • 박용주;김지홍
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.20 no.1
    • /
    • pp.133-145
    • /
    • 2002
  • A study on electronic imaging system with silver halide photography emulation by a parametric approach will be introduced. The study contains the comparison analysis between silver halide imaging process and electronic imaging process, the characterization of the detailed process in those imaging chains, such as exposure, developing, photographic print and the other photographic and digital process. We investigated the characteristic curve between optical density and the amount of exposure in silver halide and digital photography systems. Under wide range of exposure condition, several sensitometric parameters were obtained via studio and outdoor photographic experiments with conventional photography and a digital camera. whose experimental results will be shown. Finally, the comparison between electronic imaging and conventional photography via silver halide photography emulation and modeling the silver halide process wi13 be discussed.

  • PDF

Design and Implementation of Bioluminescence Signal Analysis Tool

  • Jeong, Hye-Jin;Lee, Byeong-Il;Hwang, Hae-Gil;Song, Soo-Min;Min, Jung-Joon;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1580-1587
    • /
    • 2006
  • The term molecular imaging can be broadly defined as the in vivo characterization and measurement of biologic processes at the cellular and molecular level. Optical imaging that has highly reproducibility and repetition used in molecular imaging research. In the bioluminescence imaging, animals carrying the luciferase gene are imaged with a cooled CCD(Charge-Coupled Device) camera to pick up the small number of photons transmitted through tissues. Molecular imaging analysis will allow us to observe the incipience and progression of the disease. But hardware device for molecular imaging and software for molecular image analysis were dependent on imports. In this paper, we suggest image processing methods and designed software for bioluminescence signal analysis. And we demonstrated high correlation(r=0.99) between our software's photon counts and commercial software's photon counts. ROI function and processing functions were accomplished without error. This study have the importance of the development software for bioluminescence image processing and analysis. And this study built the foundations for creative development of analysis methods. We expected this study lead the development of image technology.

  • PDF

A Study on the Optimization of color in Digital Printing (디지털 인쇄에 있어서 컬러의 최적화에 관한 연구)

  • Kim, Jae-Hae;Lee, Sung-Hyung;Cho, Ga-Ram;Koo, Chul-Whoi
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.26 no.1
    • /
    • pp.51-64
    • /
    • 2008
  • In this paper, an experiment was done where the input(scanner, digital still camera) and monitor(CRT, LCD) device used the linear multiple regression and the GOG (Gain-Offset-Gamma) characterization model to perform a color transformation. Also to color conversion method of the digital printer it used the LUT(Look Up Table), 3dimension linear interpolation and a tetrahedron interpolation method. The results are as follows. From color reappearance of digital printing case of monitor, the XYZ which it converts in linear multiple regression of input device it multiplied the inverse matrix, and then it applies the inverse GOG model and after color converting the patch of the result most which showed color difference below 5 at monitor RGB value. Also, The XYZ which is transmitted from the case input device which is a printer it makes at LAB value to convert an extreme, when the LAB value which is converted calculating the CMY with the LUT and tetrahedral interpolations the color conversion which considers the black quantity was more accurate.

  • PDF

A Study on Characterization of P-N Junction Using Silicon Direct Bonding (실리콘 직접 본딩에 의한 P-N 접합의 특성에 관한 연구)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.10
    • /
    • pp.615-624
    • /
    • 2017
  • This study investigated the various physical and electrical effects of silicon direct bonding. Direct bonding means the joining of two wafers together without an intermediate layer. If the surfaces are flat, and made clean and smooth using HF treatment to remove the native oxide layer, they can stick together when brought into contact and form a weak bond depending on the physical forces at room temperature. An IR camera and acoustic systems were used to analyze the voids and bonding conditions in an interface layer during bonding experiments. The I-V and C-V characteristics are also reported herein. The capacitance values for a range of frequencies were measured using a LCR meter. Direct wafer bonding of silicon is a simple method to fuse two wafers together; however, it is difficult to achieve perfect bonding of the two wafers. The direct bonding technology can be used for MEMS and other applications in three-dimensional integrated circuits and special devices.

Characterization of the internal flow and fuel spray from an impinging flow nozzle (노즐분공내 유체충돌이 있는 디젤노즐의 유동 및 분무특성 연구)

  • Ha, Seong-Eop;Kim, Heung-Yeol;Gu, Ja-Ye;Ryu, Gu-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1635-1646
    • /
    • 1997
  • The nozzle length to diameter ratio of real diesel nozzles is about 2-8 which is not long enough for a fully developed and stabilized flow. The characteristics of the flow such as turbulence at the nozzle exit which affect the development of the spray can be enhanced by impinging the flow inside nozzle. The flow details inside the impinging nozzles have been investigated both experimentally and numerically. The mean velocities, the fluctuating velocities, and discharge coefficients in the impinging inlet nozzles, round inlet nozzle, and sharp inlet nozzle were obtained at various Reynolds number. The developing feature of the external spray were photographed by still camera and the droplet sizes and velocities were also measured by laser Doppler technique. The spray angle was greater and the droplet sizes near the spray axis were smaller with the impinging flow inside nozzle.

Optical and Thermal Characteristic Studies of Cartilage by Laser Irradiation (레이저에 의한 연골의 광학적 열적 특성변화 연구)

  • Lee, Yeon-Ui;Youn, Jong-In
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.3
    • /
    • pp.270-277
    • /
    • 2011
  • Laser cartilage reshaping(LCR) is a promising method for reshaping cartilage by using laser irradiation to maintain permanently modifies its shape. However this method has not been fully understood due to the limited scientific researches. The purpose of this study is to analyze optical and thermal characteristics of cartilage during laser irradiation. After analyzing Monte Carlo simulation for the comparison of laser fluence distributions with different laser wavelengths the characterization of the spectral changes during Nd:YAG laser(${\lambda}$ = 1444 nm) irradiation was investigated in the ranges of 900-1700 nm with double integrating spheres. The surface temperature distribution changes during laser irradiation were investigated with an infrared camera. The quantitative measurements of optical and thermal characteristics in cartilage after laser irradiation were correlated with the transition of water flux(from bound to free water) and this study may be useful for better understanding of biophysical transformation phenomena in cartilage after laser heating.

Frequency-Based Image Analysis of Random Patterns: an Alternative Way to Classical Stereocorrelation

  • Molimard, J.;Boyer, G.;Zahouani, H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.181-193
    • /
    • 2010
  • The paper presents an alternative way to classical stereocorrelation. First, 2D image processing of random patterns is described. Sub-pixel displacements are determined using phase analysis. Then distortion evaluation is presented. The distortion is identified without any assumption on the lens model because of the use of a grid technique approach. Last, shape measurement and shape variation is caught by fringe projection. Analysis is based on two pin-hole assumptions for the video-projector and the camera. Then, fringe projection is coupled to in-plane displacement to give rise to 3D measurement set-up. Metrological characterization shows a resolution comparable to classical (stereo) correlation technique ($1/100^{th}$ pixel). Spatial resolution seems to be an advantage of the method, because of the use of temporal phase stepping (shape measurement, 1 pixel) and windowed Fourier transform (in plane displacements measurement, 9 pixels). Two examples are given. First one is the study of skin properties; second one is a study on leather fabric. In both cases, results are convincing, and have been exploited to give mechanical interpretation.

Infrared Thermographic Monitoring for Failure Characterization in Railway Axle Materials (철도차량 차축 재료의 파괴특성 적외선열화상 모니터링)

  • Kim, Jeong-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.116-120
    • /
    • 2010
  • The wheelset, an assembly of wheel and axle, is one of important parts in railway bogie, directly related with the running safety of railway rolling stock. In this investigation, the tensile failure behavior of railway axle materials was investigated. The tensile coupons were prepared from the actual rolling stock parts, which were operated over 20 years. The tensile testing was performed according to the KS guideline. During tensile testing, an infrared camera was employed to monitor temperature changes in specimen as well as demonstrate temperature contour in terms of infrared thermographic images. The thermographic images of tensile specimens showed comparable results with mechanical behavior of tensile materials. In this paper, the failure mode and behavior of railway axle materials were provided with the aid of infrared thermography technique.

Development of monocular video deflectometer based on inclination sensors

  • Wang, Shuo;Zhang, Shuiqiang;Li, Xiaodong;Zou, Yu;Zhang, Dongsheng
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.607-616
    • /
    • 2019
  • The video deflectometer based on digital image correlation is a non-contacting optical measurement method which has become a useful tool for characterization of the vertical deflections of large structures. In this study, a novel imaging model has been established which considers the variations of pitch angles in the full image. The new model allows deflection measurement at a wide working distance with high accuracy. A monocular video deflectometer has been accordingly developed with an inclination sensor, which facilitates dynamic determination of the orientations and rotation of the optical axis of the camera. This layout has advantages over the video deflectometers based on theodolites with respect to convenience. Experiments have been presented to show the accuracy of the new imaging model and the performance of the monocular video deflectometer in outdoor applications. Finally, this equipment has been applied to the measurement of the vertical deflection of Yingwuzhou Yangtze River Bridge in real time at a distance of hundreds of meters. The results show good agreement with the embedded GPS outputs.