• Title/Summary/Keyword: Camera View

Search Result 829, Processing Time 0.023 seconds

Adaptive illumination change compensation method for multi-view video coding (다시점 비디오 부호화를 위한 적응적인 조명변화 보상 방법)

  • Hur, Jae-Ho;Cho, Suk-Hee;Hur, Nam-Ho;Kim, Jin-Woong;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.11 no.4 s.33
    • /
    • pp.407-419
    • /
    • 2006
  • In this paper, an adaptive illumination change compensation method is proposed for multi-view video coding. In multi-view video, an illumination change can occur due to physically imperfect camera calibration, each different camera position and direction, and so on. These characteristics can cause a performance decrease in the multi-view video coding that uses an inter-view prediction by referring to the pictures obtained from the neighboring views. By using the proposed method, a compression ratio of the proposed method in the multi-view video coding is increased, and finally $0.1{\sim}0.6dB$ PSNR(Peak Signal-to-Noise Ratio) improvement was obtained compared with the case of not using the proposed method.

A Study on Registration Correction and Layout for Multi-view Videos Implementation (실감영상 구현을 위한 다면영상 정합보정 및 화면구성에 대한 연구)

  • Moon, Dae Hyuk
    • Journal of Digital Convergence
    • /
    • v.15 no.12
    • /
    • pp.531-541
    • /
    • 2017
  • Realistic videos using multi-view videos are created so that the contents shown on multi-view displays or screens look realistic. These images have been mostly used for special videos for exhibition, but, recently, systems such as Screen X have given rise to multi-view images as a format for storytelling contents such as movies. This study used HD-level broadcasting digital video camera with three zoom lenses for shooting wide to close-up shots focusing on a person, in the same way as Screen X, and identified and analyzed problems found during multi-view image registration correction. The results of this study suggested, provided the shooting technique and equipment are improved, the multi-view format can be used for conveying stories and information. Future research will need to investigate and supplement relevant techniques that will enable production of high-quality multi-view image contents by using a cinema-grade camera with standard lenses, instead of using broadcasting-grade zoom lenses.

New Prefiltering Methods based on a Histogram Matching to Compensate Luminance and Chrominance Mismatch for Multi-view Video (다시점 비디오의 휘도 및 색차 성분 불일치 보상을 위한 히스토그램 매칭 기반의 전처리 기법)

  • Lee, Dong-Seok;Yoo, Ji-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.127-136
    • /
    • 2010
  • In multi-view video, illumination disharmony between neighboring views can occur on account of different location of each camera and imperfect camera calibration, and so on. Such discrepancy can be the cause of the performance decrease of multi-view video coding by mismatch of inter-view prediction which refer to the pictures obtained from the neighboring views at the same time. In this paper, we propose an efficient histogram-based prefiltering algorithm to compensate mismatches between the luminance and chrominance components in multi-view video for improving its coding efficiency. To compensate illumination variation efficiently, all camera frames of a multi-view sequence are adjusted to a predefined reference through the histogram matching. A Cosited filter that is used for chroma subsampling in many video encoding schemes is applied to each color component prior to histogram matching to improve its performance. The histogram matching is carried out in the RGB color space after color space converting from YCbCr color space. The effective color conversion skill that has respect to direction of edge and range of pixel value in an image is employed in the process. Experimental results show that the compression ratio for the proposed algorithm is improved comparing with other methods.

Camera Calibration using the TSK fuzzy system (TSK 퍼지 시스템을 이용한 카메라 켈리브레이션)

  • Lee Hee-Sung;Hong Sung-Jun;Oh Kyung-Sae;Kim Eun-Tai
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.56-58
    • /
    • 2006
  • Camera calibration in machine vision is the process of determining the intrinsic cameara parameters and the three-dimensional (3D) position and orientation of the camera frame relative to a certain world coordinate system. On the other hand, Takagi-Sugeno-Kang (TSK) fuzzy system is a very popular fuzzy system and approximates any nonlinear function to arbitrary accuracy with only a small number of fuzzy rules. It demonstrates not only nonlinear behavior but also transparent structure. In this paper, we present a novel and simple technique for camera calibration for machine vision using TSK fuzzy model. The proposed method divides the world into some regions according to camera view and uses the clustered 3D geometric knowledge. TSK fuzzy system is employed to estimate the camera parameters by combining partial information into complete 3D information. The experiments are performed to verify the proposed camera calibration.

  • PDF

Camera pose estimation framework for array-structured images

  • Shin, Min-Jung;Park, Woojune;Kim, Jung Hee;Kim, Joonsoo;Yun, Kuk-Jin;Kang, Suk-Ju
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.10-23
    • /
    • 2022
  • Despite the significant progress in camera pose estimation and structure-from-motion reconstruction from unstructured images, methods that exploit a priori information on camera arrangements have been overlooked. Conventional state-of-the-art methods do not exploit the geometric structure to recover accurate camera poses from a set of patch images in an array for mosaic-based imaging that creates a wide field-of-view image by sewing together a collection of regular images. We propose a camera pose estimation framework that exploits the array-structured image settings in each incremental reconstruction step. It consists of the two-way registration, the 3D point outlier elimination and the bundle adjustment with a constraint term for consistent rotation vectors to reduce reprojection errors during optimization. We demonstrate that by using individual images' connected structures at different camera pose estimation steps, we can estimate camera poses more accurately from all structured mosaic-based image sets, including omnidirectional scenes.

VHOE-based Multi-view Stereoscopic 3D Display System (VHOE광학판을 이용한 다시점 스테레오 입체영상 디스플레이 시스템)

  • Cho, Byung-Chul;Koo, Jung-Sik;Kim, Seung-Cheol;Kim, Eun-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.42-44
    • /
    • 2002
  • The experimental model of the 8-view stereoscopic display system using the photopolymer-based VHOE is proposed. At first, the VHOE is implemented by angle-multiplexed recording of 8-view's diffraction gratings using the optimized exposure-time scheduling scheme in the photopolymer (HRF-150-100) and then. the VHOE-based 8-view stereoscopic display system is implemented by sequentially synchronizing the incident angles of the reference beam of the VHOE with the 8-view stereo images on the LCD pannel. Accordingly, from some experimental results using 8-view images generated by the toed-in stereo camera system, it is found that 8-view stereo images can be diffracted to eight different directions time-sequentially and there is some disparity between the stereo images.

  • PDF

Distributed Video Coding for Illumination Compensation of Multi-view Video

  • Park, Sean-Ae;Sim, Dong-Gyu;Jeon, Byeung-Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1222-1236
    • /
    • 2010
  • In this paper, we propose an improved distributed multi-view video coding method that is robust to illumination changes among different views. The use of view dependency is not effective for multi-view video because each view has different intrinsic and extrinsic camera parameters. In this paper, a modified distributed multi-view coding method is presented that applies illumination compensation when generating side information. The proposed encoder codes DC values of discrete cosine transform (DCT) coefficients separately by entropy coding. The proposed decoder can generate more accurate side information by using the transmitted DC coefficients to compensate for illumination changes. Furthermore, AC coefficients are coded with conventional entropy or channel coders depending on the frequency band. We found that the proposed algorithm is about 0.1~0.5 dB better than conventional algorithms.

Integrating Multi-view Stereoscopic Transmission System into MPEG-21 DIA (Digital Item Adaptation)

  • Lee, Seung-Won;Kim, Man-Bae;Byun, Hye-Ran;Park, Il-Kwon
    • Journal of Broadcast Engineering
    • /
    • v.12 no.4
    • /
    • pp.342-349
    • /
    • 2007
  • In general multi-view system, all the view sequences acquired at the server are transmitted to the client. However, this kind of system requires high processing power of the server as well as the client, thus it is posing a difficulty in practical applications. To overcome this problem, a relatively simple method is to transmit only two view-sequences requested by the client in order to deliver a stereoscopic video. In this system, effective communication between the server and the client is one of important aspects. Therefore, we propose an efficient multi-view system that transmits two view-sequences according to user's request. The view selection process is integrated into MPEG-21 DIA (Digital Item Adaptation) so that our system is compatible to MPEG-21 multimedia framework. Furthermore, multi-view descriptors related to multi-view camera and systems are newly introduced. The syntax of the descriptions and their elements is represented in XML (extensible Markup Language) schema. Intermediate view reconstruction (IVR) is used to reduce such discomfort with excessive disparity. Furthermore, IVR is useful for smooth transition between two stereoscopic view sequences. Finally, through the implementation of testbed, we can show the valuables and possibilities of our system.

Hybrid Stereoscopic Camera System (이종 카메라를 이용한 스테레오 카메라 시스템)

  • Shin, Hyoung-Chul;Kim, Sang-Hoon;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.16 no.4
    • /
    • pp.602-613
    • /
    • 2011
  • In this paper, we propose a hybrid stereoscopic camera system which acquires and utilizes stereoscopic images from two different camera modules, the main-camera module and the sub-camera module. Hybrid stereoscopic camera can effectively reduce the price and the size of a stereoscopic camera by using a relatively small and cheap sub-camera module such as a mobile phone camera. Images from the two different camera modules are very different from each other in aspects of color, angle of view, scale, resolution and so on. The proposed system performs an efficient hybrid stereoscopic image registration algorithm that transforms hybrid stereoscopic images into normal stereoscopic images based-on camera geometry. As experimental results, the registered stereoscopic images and applications of the proposed system are shown to demonstrate the performance and the functionality of the proposed camera system.

Generation of an eye-contacted view using color and depth cameras (컬러와 깊이 카메라를 이용한 시점 일치 영상 생성 기법)

  • Hyun, Jee-Ho;Han, Jae-Young;Won, Jong-Pil;Yoo, Ji-Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1642-1652
    • /
    • 2012
  • Generally, a camera isn't located at the center of display in a tele-presence system and it causes an incorrect eye contact between speakers which reduce the realistic feeling during the conversation. To solve this incorrect eye contact problem, we newly propose an intermediate view reconstruction algorithm using both a color camera and a depth camera and applying for the depth image based rendering (DIBR) algorithm. In the proposed algorithm, an efficient hole filling method using the arithmetic mean value of neighbor pixels and an efficient boundary noise removal method by expanding the edge region of depth image are included. We show that the generated eye-contacted image has good quality through experiments.