• 제목/요약/키워드: Camera System

검색결과 5,122건 처리시간 0.036초

우리별 3호 탑재 고해상도 CCD 카메라시스템 개발 (Development of KITSAT-3 High Resolution CCD Camera System)

  • 유상근;장현석;이흥규;최순달
    • 대한원격탐사학회지
    • /
    • 제12권2호
    • /
    • pp.97-110
    • /
    • 1996
  • 본 논문에서는 1998년 중반에 발사예정인 우리별 3호의 주 탑재물인 고해상도 지구관측 카메라시스템의 구성, 기능 및 운용방법등에 대하여 기술한다. 우리가 개발한 카메라시스템은 남아 프리카공화국의 Stellenbosch 대학교와 국제공동연구로 수행중이며 1996년말 현재 엔지니어링 모델을 완성하고 환경시험중이다. 본 CCD 카메라는 기술시험용 시스템이며 기술습득 및 운용 시험이 주목적이고 지 상해상도는 800 Km 고도에서 약 15m 정도이다.

선 대응 기법을 이용한 카메라 교정파라미터 추정 (Estimation of Camera Calibration Parameters using Line Corresponding Method)

  • 최성구;고현민;노도환
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권10호
    • /
    • pp.569-574
    • /
    • 2003
  • Computer vision system is broadly adapted like as autonomous vehicle system, product line inspection, etc., because it has merits which can deal with environment flexibly. However, for applying it for that industry, it has to clear the problem that recognize position parameter of itself. So that computer vision system stands in need of camera calibration to solve that. Camera calibration consists of the intrinsic parameter which describe electrical and optical characteristics and the extrinsic parameter which express the pose and the position of camera. And these parameters have to be reorganized as the environment changes. In traditional methods, however, camera calibration was achieved at off-line condition so that estimation of parameters is in need again. In this paper, we propose a method to the calibration of camera using line correspondence in image sequence varied environment. This method complements the corresponding errors of the point corresponding method statistically by the extraction of line. The line corresponding method is strong by varying environment. Experimental results show that the error of parameter estimated is within 1% and those is effective.

A Study on Machine Vision System and Camera Modeling with Geometric Distortion

  • 왕한흥;한성현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.179-185
    • /
    • 1997
  • This paper presents machine vision technique with a camera modeling that accounts for major sources of camera distortion, namely,radial, decentering, and thin prism distortion. Radial distortion causes an inward or outward displacement of a given image point from its ideal location. Actual optical systems are subject to varios degrees of decentering,that is,the optical centers of lens elements are not strictly collinear. Thin prism distortion arises form imperfection in lens design and manufacturing as well as camera assembly. It is our purpose to develop the vision system for the pattern recognition and the automatic test of and to apply the line of part manufacturing.

MTF 측정에 의한 카메라 렌즈 해상력 검사 시스템 개발 (Development of Measuring System for Camera Lens Resolution Based on the MTF Performance)

  • 박희재;신호승;노영훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.629-634
    • /
    • 2000
  • This System is developed for the estimation of the Camera Lens Resolution. Signal data proportional to light intensity is obtained and sampled from the 2D CCD. Based on the measured signal. the MTF charateristcs of a camera lens are measured. We could measure the sagittal and tangential MTF in the on and off-axis at the same time. The automatic measurig methods for optimal image plane, magnification, and best marginal direction of test lens are presented.

  • PDF

능동카메라 환경에서의 특징기반의 이동물체 추적 (Feature based Object Tracking from an Active Camera)

  • 오종안;정영기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.141-144
    • /
    • 2002
  • This paper describes a new feature based tracking system that can track moving objects with a pan-tilt camera. We extract corner features of the scene and tracks the features using filtering, The global motion energy caused by camera movement is eliminated by finding the maximal matching position between consecutive frames using Pyramidal template matching. The region of moving object is segmented by clustering the motion trajectories and command the pan-tilt controller to follow the object such that the object will always lie at the center of the camera. The proposed system has demonstrated good performance for several video sequences.

  • PDF

CCTV유형 CCD 카메라를 이용한 근거리 산업사진측량의 정확도 (Accuracy of Close-Range Industrial Photogrammetry Using CCTV Type CCD Camera)

  • 이진덕;최용진
    • 한국측량학회지
    • /
    • 제19권3호
    • /
    • pp.283-290
    • /
    • 2001
  • 저가의 CCTV유형 CCD카메라를 기반으로 하는 수치 근거리사진측량 시스템의 산업정밀측정의 수행능력을 평가하기 위하여 CCD카메라, 프레임그래버, 수치영상 측정 및 자체검정 광속조정 기법을 통합한 수치근거리 사진측량시스템이 구축되었다. 이 시스템의 적용실험을 위하여 정육면체 형상의 인공어초를 대상물로하여 다중지점 수렴 네트워크상에서 수치영상을 획득하였다. 자체검정 광속조정기법에 의해 CCD 카메라의 기하학적 검정과 동시에 대상물 전면에 대한 사진삼각측량을 수행하였다. 또한 이미 높은 정확도 잠재성이 입증된 고해상도 스틸비디오 카메라(Kodak DCS)를 유사한 네트워크 조건에서 이용하여 처리함으로써 서로 다른 유형의 카메라를 기반으로 하는 두 시스템의 사진삼각측량 결과의 정확도를 비교하였다.

  • PDF

Feasibility of Using an Automatic Lens Distortion Correction (ALDC) Camera in a Photogrammetric UAV System

  • Jeong, Hohyun;Ahn, Hoyong;Park, Jinwoo;Kim, Hyungwoo;Kim, Sangseok;Lee, Yangwon;Choi, Chuluong
    • 한국측량학회지
    • /
    • 제33권6호
    • /
    • pp.475-483
    • /
    • 2015
  • This study examined the feasibility of using an automatic lens distortion correction (ALDC) camera as the payload for a photogrammetric unmanned aerial vehicle (UAV) system. First, lens distortion for the interior orientation (IO) parameters was estimated. Although previous studies have largely ignored decentering distortion, this study revealed that more than 50% of the distortion of the ALDC camera was caused by decentering distortion. Second, we compared the accuracy of bundle adjustment for camera calibration using three image types: raw imagery without the ALDC option; imagery corrected using lens profiles; and imagery with the ALDC option. The results of image triangulation, the digital terrain model (DTM), and the orthoimage using the IO parameters for the ALDC camera were similar to or slightly better than the results using self-calibration. These results confirm that the ALDC camera can be used in a photogrammetric UAV system using only self-calibration.

소형 다중분광 항공촬영 시스템(PKNU 3호) 개발에 관한 연구 (Research for development of small format multi -spectral aerial photographing systems (PKNU 3))

  • 이은경;최철웅;서영찬;조남춘
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 추계학술발표회 논문집
    • /
    • pp.143-152
    • /
    • 2004
  • Researchers seeking geological and environmental information, depend on remote sensing and aerial photographic datum from various commercial satellites and aircraft. However, adverse weather conditions as well as equipment expense limit the ability to collect data anywhere and anytime. To allow for better flexibility in geological and environmental data collection, we have developed a compact, multi-spectral automatic Aerial Photographic system (PKNU2). This system's Multi-spectral camera can record visible (RGB) and infrared (NIR) band (3032*2008 Pixels) images Visible and infrared band images were obtained from each camera respectively and produced color-infrared composite images to be analyzed for the purpose of the environmental monitoring. However this did not provide quality data. Furthermore, it has the disadvantage of having the stereoscopic overlap area being 60% unsatisfied due to the 12 seconds of storage time of each data The PKNU2 system in contrast, photographed photos of great capacity Thus, with such results, we have been proceeding to develop the advanced PKNU2 (PKNU3) system that consists of a color-infrared spectral camera that can photograph in the visible and near-infrared bands simultaneously using a single sensor, a thermal infrared camera, two 40G computers to store images, and an MPEG board that can compress and transfer data to the computer in real time as well as be able to be mounted onto a helicopter platform.

  • PDF

Research on Thermal Refocusing System of High-resolution Space Camera

  • Li, Weiyan;Lv, Qunbo;Wang, Jianwei;Zhao, Na;Tan, Zheng;Pei, Linlin
    • Current Optics and Photonics
    • /
    • 제6권1호
    • /
    • pp.69-78
    • /
    • 2022
  • A high-resolution camera is a precise optical system. Its vibrations during transportation and launch, together with changes in temperature and gravity field in orbit, lead to different degrees of defocus of the camera. Thermal refocusing is one of the solutions to the problems related to in-orbit defocusing, but there are few relevant thermal refocusing mathematical models for systematic analysis and research. Therefore, to further research thermal refocusing systems by using the development of a high-resolution micro-nano satellite (CX6-02) super-resolution camera as an example, we established a thermal refocusing mathematical model based on the thermal elasticity theory on the basis of the secondary mirror position. The detailed design of the thermal refocusing system was carried out under the guidance of the mathematical model. Through optical-mechanical-thermal integration analysis and Zernike polynomial calculation, we found that the data error obtained was about 1%, and deformation in the secondary mirror surface conformed to the optical index, indicating the accuracy and reliability of the thermal refocusing mathematical model. In the final ground test, the thermal vacuum experimental verification data and in-orbit imaging results showed that the thermal refocusing system is consistent with the experimental data, and the performance is stable, which provides theoretical and technical support for the future development of a thermal refocusing space camera.

Acquisition, Processing and Image Generation System for Camera Data Onboard Spacecraft

  • C.V.R Subbaraya Sastry;G.S Narayan Rao;N Ramakrishna;V.K Hariharan
    • International Journal of Computer Science & Network Security
    • /
    • 제23권3호
    • /
    • pp.94-100
    • /
    • 2023
  • The primary goal of any communication spacecraft is to provide communication in variety of frequency bands based on mission requirements within the Indian mainland. Some of the spacecrafts operating in S-band utilizes a 6m or larger aperture Unfurlable Antenna (UFA for S-band links and provides coverage through five or more S-band spot beams over Indian mainland area. The Unfurlable antenna is larger than the satellite and so the antenna is stowed during launch. Upon reaching the orbit, the antenna is deployed using motors. The deployment status of any deployment mechanism will be monitored and verified by the telemetered values of micro-switch position before the start of deployment, during the deployment and after the completion of the total mechanism. In addition to these micro switches, a camera onboard will be used for capturing still images during primary and secondary deployments of UFA. The proposed checkout system is realized for validating the performance of the onboard camera as part of Integrated Spacecraft Testing (IST) conducted during payload checkout operations. It is designed for acquiring the payload data of onboard camera in real-time, followed by archiving, processing and generation of images in near real-time. This paper presents the architecture, design and implementation features of the acquisition, processing and Image generation system for Camera onboard spacecraft. Subsequently this system can be deployed in missions wherever similar requirement is envisaged.