• Title/Summary/Keyword: Camera System

Search Result 5,122, Processing Time 0.035 seconds

Low Cost Digital X-Ray Image Capture System Using CCD Camera (CCD 카메라를 사용한 저가형 Digital X-Ray 영상취득 시스템)

  • Kang, Yong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.19-22
    • /
    • 2007
  • We developed a low cost digital X-Ray image capturing system using a CCD camera, instead of using the high cost image plate and image intensifier. In order to reduce the system volume, we directly made the dark box shorter than the previous model. Using the graphic language, we developed a program in order for post-processing the images captured by the CCD camera. This program improves the image resolving power.

A Flexible Camera Calibration System for Mobile Platform

  • Lu, Bo;Whangbo, Taeg-Keun;Han, Tae-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1457-1460
    • /
    • 2013
  • We propose a flexible camera calibration system for mobile platform to calibrate the camera's intrinsic parameters which based on the geometrical property of the vanishing points determined by two perpendicular groups of parallel lines. The system only requires the camera to observe a rectangle card show at a few(at least four)different orientation. The experimental results of the real images show the proposed calibration system in this paper is easy to use and robust.

Head tracking system using image processing (영상처리를 이용한 머리의 움직임 추적 시스템)

  • 박경수;임창주;반영환;장필식
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.1-10
    • /
    • 1997
  • This paper is concerned with the development and evaluation of the camera calibration method for a real-time head tracking system. Tracking of head movements is important in the design of an eye-controlled human/computer interface and the area of virtual environment. We proposed a video-based head tracking system. A camera was mounted on the subject's head and it took the front view containing eight 3-dimensional reference points(passive retr0-reflecting markers) fixed at the known position(computer monitor). The reference points were captured by image processing board. These points were used to calculate the position (3-dimensional) and orientation of the camera. A suitable camera calibration method for providing accurate extrinsic camera parameters was proposed. The method has three steps. In the first step, the image center was calibrated using the method of varying focal length. In the second step, the focal length and the scale factor were calibrated from the Direct Linear Transformation (DLT) matrix obtained from the known position and orientation of the camera. In the third step, the position and orientation of the camera was calculated from the DLT matrix, using the calibrated intrinsic camera parameters. Experimental results showed that the average error of camera positions (3- dimensional) is about $0.53^{\circ}C$, the angular errors of camera orientations are less than $0.55^{\circ}C$and the data aquisition rate is about 10Hz. The results of this study can be applied to the tracking of head movements related to the eye-controlled human/computer interface and the virtual environment.

  • PDF

Consideration for application of IP camera system in Rolling Stock (철도차량 IP 카메라 시스템 적용에 대한 고찰)

  • Choi, Man-Ki;Jung, Pil-Hwa;Jung, Ho-Yung;Park, Jong-Chun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.187-195
    • /
    • 2010
  • IP camera which transmits image signal in network includes web server, network interface unit and CCD(Charge-Coupled Device) module. IP camera is able to transmit image signals by network in real time and to monitor the scene image always by IP or Web address. IP camera is substituted for analog camera now gradually according to the development and progress of camera technology and expect it to extend the boundary in rolling stock gradually cause of the excellent expansibility and noise solution of analog camera. We survey the IP camera system composition in rolling stock and so this can be a help to develop and design IP camera system, because it has unsolved problems for common use of IP camera.

  • PDF

An active stereo camera modeling (동적 스테레오 카메라 모델링)

  • Do, Kyoung-Mihn;Lee, Kwae-Hi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.297-304
    • /
    • 1997
  • In stereo vision, camera modeling is very important because the accuracy of the three dimensional locations depends considerably on it. In the existing stereo camera models, two camera planes are located in the same plane or on the optical axis. These camera models cannot be used in the active vision system where it is necessary to obtain two stereo images simultaneously. In this paper, we propose four kinds of stereo camera models for active stereo vision system where focal lengths of the two cameras are different and each camera is able to rotate independently. A single closed form solution is obtained for all models. The influence of the stereo camera model to the field of view, occlusion, and search area used for matching is shown in this paper. And errors due to inaccurate focal length are analyzed and simulation results are shown. It is expected that the three dimensional locations of objects are determined in real time by applying proposed stereo camera models to the active stereo vision system, such as a mobile robot.

  • PDF

The Camera Tracking of Real-Time Moving Object on UAV Using the Color Information (컬러 정보를 이용한 무인항공기에서 실시간 이동 객체의 카메라 추적)

  • Hong, Seung-Beom
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.2
    • /
    • pp.16-22
    • /
    • 2010
  • This paper proposes the real-time moving object tracking system UAV using color information. Case of object tracking, it have studied to recognizing the moving object or moving multiple objects on the fixed camera. And it has recognized the object in the complex background environment. But, this paper implements the moving object tracking system using the pan/tilt function of the camera after the object's region extraction. To do this tracking system, firstly, it detects the moving object of RGB/HSI color model and obtains the object coordination in acquired image using the compact boundary box. Secondly, the camera origin coordination aligns to object's top&left coordination in compact boundary box. And it tracks the moving object using the pan/tilt function of camera. It is implemented by the Labview 8.6 and NI Vision Builder AI of National Instrument co. It shows the good performance of camera trace in laboratory environment.

Neural Network Based Camera Calibration and 2-D Range Finding (신경회로망을 이용한 카메라 교정과 2차원 거리 측정에 관한 연구)

  • 정우태;고국원;조형석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.510-514
    • /
    • 1994
  • This paper deals with an application of neural network to camera calibration with wide angle lens and 2-D range finding. Wide angle lens has an advantage of having wide view angles for mobile environment recognition ans robot eye in hand system. But, it has severe radial distortion. Multilayer neural network is used for the calibration of the camera considering lens distortion, and is trained it by error back-propagation method. MLP can map between camera image plane and plane the made by structured light. In experiments, Calibration of camers was executed with calibration chart which was printed by using laser printer with 300 d.p.i. resolution. High distortion lens, COSMICAR 4.2mm, was used to see whether the neural network could effectively calibrate camera distortion. 2-D range of several objects well be measured with laser range finding system composed of camera, frame grabber and laser structured light. The performance of 3-D range finding system was evaluated through experiments and analysis of the results.

  • PDF

A method for image processing by use of inertial data of camera

  • Kaba, K.;Kashiwagi, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.221-225
    • /
    • 1998
  • This paper is to present a method for recognizing an image of a tracking object by processing the image from a camera, whose attitude is controlled in inertial space with inertial co-ordinate system. In order to recognize an object, a pseudo-random M-array is attached on the object and it is observed by the camera which is controlled on inertial coordinate basis by inertial stabilization unit. When the attitude of the camera is changed, the observed image of M-array is transformed by use of affine transformation to the image in inertial coordinate system. Taking the cross-correlation function between the affine-transformed image and the original image, we can recognize the object. As parameters of the attitude of the camera, we used the azimuth angle of camera, which is de-fected by gyroscope of an inertial sensor, and elevation an91e of camera which is calculated from the gravitational acceleration detected by servo accelerometer.

  • PDF

Design and Implementation of Control Program for EO/IR Camera mounted on Multi-Purpose Unmanned Helicopter

  • Ahn, MyeongGi;Seong, KilYoung;Lee, JongHun;Kim, JaeKyung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.72-77
    • /
    • 2021
  • This paper proposes a design and development plan for a control program for the MX-10 EO/IR camera. This camera is a piece of mission equipment mounted on the multi-purpose unmanned helicopter (MPUH) system. Operators must be able to control the necessary functions of the camera to perform their assigned tasks. To achieve this, the function to control the camera was analyzed, and a control program was developed. In addition, the control program was linked to a joystick for convenient operation of the camera by the operator.

3-D Position Analysis of an Object using a Monocular USB port Camera through JAVA (한 대의 USB port 카메라와 자바를 이용한 3차원 정보 추출)

  • 지창호;이동엽;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.606-609
    • /
    • 2001
  • This paper's purpose is to obtain 3-Dimension information by using a monocular camera. This system embodies to obtain the height of object by using trigonometry method between a reference point of circumstance and an object. It is possible to build up system regardless of operating system, and then set it up. An comfortable USB port camera is used everywhere without the capture board. The internet can be used by using the applet and JMF everywhere. We regard the camera as a fixed. And we have developed a Real-Time JPEG/RTP Network Camera system using UDP/IP on Ethernet.

  • PDF