• Title/Summary/Keyword: Camera Performance

Search Result 1,815, Processing Time 0.029 seconds

Image Matching Algorithm for Thermal Panorama Image Construction Adaptable for Fire Disasters (화재상황에서 적용가능한 열화상 카메라의 파노라마 촬영을 위한 동일점 추출 알고리즘)

  • Gwak, Dong-Gi;Kim, Dong Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.895-903
    • /
    • 2016
  • In a fire disaster in a tunnel, people should be rescued immediately using the information obtained from cameras or sensors. However, in heavy smoke from a fire, people cannot be clearly identified by a mounted CCTV, which is only effective in a clear environment. A thermal camera can be an alternative to this in smoky situations and is capable of detecting people from their emitted thermal energy. On the other hand, the thermal image camera has a smaller field of view than an ordinary camera due to its lens characteristics and temperature error, etc. In order to cover a relatively wide area, panoramic image construction needs to be implemented. In this work, a template-based similarity matching algorithm for constructing the panorama image is proposed and its performance is verified through experiments. This scheme provides guidelines for coping with difficulty in image construction, which requires an exact correspondence search for two images in cases of heavy smoke.

Robust Estimation of Camera Motion using Fuzzy Classification Method (퍼지 분류기법을 이용한 강건한 카메라 동작 추정)

  • Lee, Joong-Jae;Kim, Gye-Young;Choi, Hyung-Il
    • The KIPS Transactions:PartB
    • /
    • v.13B no.7 s.110
    • /
    • pp.671-678
    • /
    • 2006
  • In this paper, we propose a method for robustly estimating camera motion using fuzzy classification from the correspondences between two images. We use a RANSAC(Random Sample Consensus) algorithm to obtain accurate camera motion estimates in the presence of outliers. The drawback of RANSAC is that its performance depends on a prior knowledge of the outlier ratio. To resolve this problem the proposed method classifies samples into three classes(good sample set, bad sample set and vague sample set) using fuzzy classification. It then improves classification accuracy omitting outliers by iteratively sampling in only good sample set. The experimental results show that the proposed approach is very effective for computing a homography.

Real-Time PTZ Camera with Detection and Classification Functionalities (검출과 분류기능이 탑재된 실시간 지능형 PTZ카메라)

  • Park, Jong-Hwa;Ahn, Tae-Ki;Jeon, Ji-Hye;Jo, Byung-Mok;Park, Goo-Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2C
    • /
    • pp.78-85
    • /
    • 2011
  • In this paper we proposed an intelligent PTZ camera system which detects, classifies and tracks moving objects. If a moving object is detected, features are extracted for classification and then realtime tracking follows. We used GMM for detection followed by shadow removal. Legendre moment is used for classification. Without auto focusing, we can control the PTZ camera movement by using center points of the image and object's direction, distance and velocity. To implement the realtime system, we used TI DM6446 Davinci processor. Throughout the experiment, we obtained system's high performance in classification and tracking both at vehicle's normal and high speed motion.

Spatial Compare Filter Based Real-Time dead Pixel Correction Method for Infrared Camera

  • Moon, Kil-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.35-41
    • /
    • 2016
  • In this paper, we propose a new real-time dead pixel detection method based on spatial compare filtering, which are usually used in the small target detection. Actually, the soft dead and the small target are cast in the same mold. Our proposed method detect and remove the dead pixels as applying the spatial compare filtering, into the pixel outputs of a detector after the non-uniformity correction. Therefore, we proposed method can effectively detect and replace the dead pixels regardless of the non-uniformity correction performance. In infrared camera, there are usually many dead detector pixels which produce abnormal output caused by manufactural process or operational environment. There are two kind of dead pixel. one is hard dead pixel which electronically generate abnormal outputs and other is soft dead pixel which changed and generated abnormal outputs by the planning process. Infrared camera have to perform non-uniformity correction because of structural and material properties of infrared detector. The hard dead pixels whose offset values obtained by non-uniformity correction are much larger or smaller than the average can be detected easily as dead pixels. However, some dead pixels(soft dead pixel) can remain, because of the difficulty of uncleared decision whether normal pixel or abnormal pixel.

Multiple Camera-based Person Correspondence using Color Distribution and Context Information of Human Body (색상 분포 및 인체의 상황정보를 활용한 다중카메라 기반의 사람 대응)

  • Chae, Hyun-Uk;Seo, Dong-Wook;Kang, Suk-Ju;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.939-945
    • /
    • 2009
  • In this paper, we proposed a method which corresponds people under the structured spaces with multiple cameras. The correspondence takes an important role for using multiple camera system. For solving this correspondence, the proposed method consists of three main steps. Firstly, moving objects are detected by background subtraction using a multiple background model. The temporal difference is simultaneously used to reduce a noise in the temporal change. When more than two people are detected, those detected regions are divided into each label to represent an individual person. Secondly, the detected region is segmented as features for correspondence by a criterion with the color distribution and context information of human body. The segmented region is represented as a set of blobs. Each blob is described as Gaussian probability distribution, i.e., a person model is generated from the blobs as a Gaussian Mixture Model (GMM). Finally, a GMM of each person from a camera is matched with the model of other people from different cameras by maximum likelihood. From those results, we identify a same person in different view. The experiment was performed according to three scenarios and verified the performance in qualitative and quantitative results.

A Study of Auto Focus Control Method for the Mobile Phone Camera (이동단말기 카메라 자동 초점 조절 방식에 관한 연구)

  • Kim, Gab-Yong;Kim, Young-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.1003-1006
    • /
    • 2005
  • Demand of Auto Focus for Camera module is increased very fast in these days and will be adapted to most of mobile phones in next few years instead of traditional method, fixed focus. To make auto focus function, 2 kinds of solutions, VCM(Voice Coil Motor) and Piezo linear motor are normally used. In this paper, VCM which commercially strong candidate for Auto focus mechanism was investigated to verify principles are match up to the actual operation. Auto focus algorithm is different between 1 chip and 2 chip solution. Normally 2 chip is more complicate than the other. To have best performance on this function, hysteresis and depth of field(DOF) table should be optimized.

  • PDF

Shot Transition Detection by Compensating Camera Operations (카메라의 동작을 보정한 장면전환 검출)

  • Jang Seok-Woo;Choi Hyung-Il
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.403-412
    • /
    • 2005
  • In this paper, we propose an effective method for detecting and classifying shot transitions in video sequences. The proposed method detects and classifies shot transitions including cuts, fades and dissolves by compensating camera operations in video sequences, so that our method prevents false positives resulting from camera operations. Also, our method eliminates local moving objects in the process of compensating camera operations, so that our method prevents errors resulting from moving objects. In the experiments, we show that our shot transition approach can work as a promising solution by comparing the proposed method with previously known methods in terms of performance.

Human Detection in Images Using Optical Flow and Learning (광 흐름과 학습에 의한 영상 내 사람의 검지)

  • Do, Yongtae
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.194-200
    • /
    • 2020
  • Human detection is an important aspect in many video-based sensing and monitoring systems. Studies have been actively conducted for the automatic detection of humans in camera images, and various methods have been proposed. However, there are still problems in terms of performance and computational cost. In this paper, we describe a method for efficient human detection in the field of view of a camera, which may be static or moving, through multiple processing steps. A detection line is designated at the position where a human appears first in a sensing area, and only the one-dimensional gray pixel values of the line are monitored. If any noticeable change occurs in the detection line, corner detection and optical flow computation are performed in the vicinity of the detection line to confirm the change. When significant changes are observed in the corner numbers and optical flow vectors, the final determination of human presence in the monitoring area is performed using the Histograms of Oriented Gradients method and a Support Vector Machine. The proposed method requires processing only specific small areas of two consecutive gray images. Furthermore, this method enables operation not only in a static condition with a fixed camera, but also in a dynamic condition such as an operation using a camera attached to a moving vehicle.

Feature-based Object Tracking using an Active Camera (능동카메라를 이용한 특징기반의 물체추적)

  • 정영기;호요성
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.694-701
    • /
    • 2004
  • In this paper, we proposed a feature-based tracking system that traces moving objects with a pan-tilt camera after separating the global motion of an active camera and the local motion of moving objects. The tracking system traces only the local motion of the comer features in the foreground objects by finding the block motions between two consecutive frames using a block-based motion estimation and eliminating the global motion from the block motions. For the robust estimation of the camera motion using only the background motion, we suggest a dominant motion extraction to classify the background motions from the block motions. We also propose an efficient clustering algorithm based on the attributes of motion trajectories of corner features to remove the motions of noise objects from the separated local motion. The proposed tracking system has demonstrated good performance for several test video sequences.

Development of Underwater Laser Scanner with Efficient and Flexible Installation for Unmanned Underwater Vehicle (무인잠수정을 위한 효과적이고 유연한 설치 성능을 지닌 수중 레이저스캐너 개발)

  • Lee, Yeongjun;Lee, Yoongeon;Chae, Junbo;Choi, Hyun-Taek;Yeu, Tae-Kyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.511-517
    • /
    • 2018
  • This paper proposes a vision-based underwater laser scanner with separate structures for an underwater camera and a line laser projector. Because the two devices can be adaptively placed regardless of the features of the unmanned underwater vehicle (UUV), the scanner has significant advantages in relation to its availability and flexibility. Position calibration between the underwater camera and laser projector guarantees a 3D measuring performance with high accuracy. To verify the proposed underwater laser scanner, a test-bed system was manufactured, which consisted of the laser projector, camera, Pan&Tilt, and Attitude and Heading Reference System (AHRS). A camera-laser calibration test and simple 3D reconstruction test were performed in a water tank and the experimental results are reported.