• 제목/요약/키워드: Calvarial bone graft

검색결과 95건 처리시간 0.026초

Evaluation of the regenerative capacity of stem cells combined with bone graft material and collagen matrix using a rabbit calvarial defect model

  • Jun-Beom Park;InSoo Kim;Won Lee;Heesung Kim
    • Journal of Periodontal and Implant Science
    • /
    • 제53권6호
    • /
    • pp.467-477
    • /
    • 2023
  • Purpose: The purpose of this study was to evaluate the regenerative capacity of stem cells combined with bone graft material and a collagen matrix in rabbit calvarial defect models according to the type and form of the scaffolds, which included type I collagen matrix and synthetic bone. Methods: Mesenchymal stem cells (MSCs) were obtained from the periosteum of participants. Four symmetrical 6-mm-diameter circular defects were made in New Zealand white rabbits using a trephine drill. The defects were grafted with (1) group 1: synthetic bone (β-tricalcium phosphate/hydroxyapatite [β-TCP/HA]) and 1×105 MSCs; (2) group 2: collagen matrix and 1×105 MSCs; (3) group 3: β-TCP/HA, collagen matrix covering β-TCP/HA, and 1×105 MSCs; or (4) group 4: β-TCP/HA, chipped collagen matrix mixed with β-TCP/HA, and 1×105 MSCs. Cellular viability and cell migration rates were analyzed. Results: Uneventful healing was achieved in all areas where the defects were made at 4 weeks, and no signs of infection were identified during the healing period or at the time of retrieval. New bone formation was more evident in groups 3 and 4 than in the other groups. A densitometric analysis of the calvarium at 8 weeks post-surgery showed the highest values in group 3. Conclusions: This study showed that the highest regeneration was found when the stem cells were applied to synthetic bone along with a collagen matrix.

멍게와 미더덕 피부의 천연 셀룰로오스 각질을 이용한 골재생 효능을 가진 생활성막의 개발 - 예비 연구 (DEVELOPMENT OF A BIOACTIVE CELLULOSE MEMBRANE FROM SEA SQUIRT SKIN FOR BONE REGENERATION - A PRELIMINARY RESEARCH)

  • 김성민;이종호;조정애;이승철;이석근
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제31권5호
    • /
    • pp.440-453
    • /
    • 2005
  • Objectives : To develop a bioactive membrane for guided bone regeneration (GBR), the biocompatibility and bone regenerating capacity of the cellulose membrane obtained from the Ascidians squirt skin were evaluated. Materials and methods : After processing the pure cellulose membrane from the squirt skin, the morphological study, amino acid analysis and the immunoreactivity of the cellulose membrane were tested. Total eighteen male Spraque-Dawley rats (12 weeks, weighing 250 to 300g) were divided into two control (n=8) and another two experimental groups (n=10). In the first experimental group (n=5), the cellulose membrane was applicated to the 8.0 mm sized calvarial bone defect and the same sized defect was left without cellulose membrane in the first control group (n=4). In the another experimental group (n=5), the cellulose membrane was applicated to the same sized calvarial bone defect after femoral bone graft and the same sized defect with bone graft was left without cellulose membrane in the another control group (n=4). Each group was sacrificed after 6 weeks, the histological study with H&E and Masson trichrome stain was done, and immunohistochemical stainings of angiogenin and VEGF were also carried out. Results : The squirt skin cellulose showed the bio-inductive effect on the bone and mesenchymal tissues in the periosteum of rat calvarial bone. This phenomenon was found only in the inner surface of the cellulose membrane after 6 weeks contrast to the outer surface. Bone defect covered with the bioactive cellulose membrane showed significantly greater bone formation compared with control groups. Mesenchymal cells beneath the inner surface of the bioactive cellulose membrane were positive to the angiogenin and VEGF antibodies. Conclusion : We suppose that there still remains extremely little amount of peptide fragment derived from the basement membrane matrix proteins of squirt skin, which is a kind of anchoring protein composed of glycocalyx. This composition could prevent the adverse immunological hypersensitivity and also induce bioactive properties of cellulose membrane. These properties induced the effective angiogenesis with rapid osteogenesis beneath the inner surface of cellulose membrane, and so the possibilities of clinical application in dental field as a GBR material will be able to be suggested.

The effect of 4-hexylresorcinol on xenograft degradation in a rat calvarial defect model

  • Kang, Yei-Jin;Noh, Ji-Eun;Lee, Myung-Jin;Chae, Weon-Sik;Lee, Si Young;Kim, Seong-Gon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제38권
    • /
    • pp.29.1-29.9
    • /
    • 2016
  • Background: The objective of this study was to evaluate xenograft degradation velocity when treated with 4-hexylresorcinol (4HR). Methods: The scapula of a cow was purchased from a local grocery, and discs (diameter 8 mm, thickness 1 mm) were prepared by trephine bur. Discs treated with 4HR were used as the experimental group. Untreated discs were used as the control. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), antibacterial test, endotoxin test, and scanning electron microscopy (SEM) were performed on the discs. In vivo degradation was evaluated by the rat calvarial defect model. Results: The XRD and FT-IR results demonstrated successful incorporation of 4HR into the bovine bone. The experimental disc showed antibacterial properties. The endotoxin test yielded results below the level of endotoxin contamination. In the SEM exam, the surface of the experimental group showed needle-shaped crystal and spreading of RAW264.7 cells. In the animal experiments, the amount of residual graft was significantly smaller in the experimental group compared to the control group (P = 0.003). Conclusions: In this study, 4HR was successfully incorporated into bovine bone, and 4HR-incorporated bovine bone had antibacterial properties. In vivo experiments demonstrated that 4HR-incorporated bovine bone showed more rapid degradation than untreated bovine bone.

Novel Calcium Phosphate Glass for Hard-Tissue Regeneration

  • Lee, Yong-Keun;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • 제38권sup2호
    • /
    • pp.273-298
    • /
    • 2008
  • Purpose: The aim of this review is to introduce a novel bone-graft material for hard-tissue regeneration based on the calcium phosphate glass(CPG). Materials and Methods: CPG was synthesized by melting and subsequent quenching process in the system of CaO-$CaF_2-P_2O_5$-MgO-ZnO having a much lower Ca/P ratio than that of conventional calcium phosphates such as HA or TCP. The biodegradability and bioactivity were performed. Effects on the proliferation, calcification and mineralization of osteoblast-like cells were examined in vitro. Influence in new bone and cementum formations was investigated in vivo using calvarial defects of Sprague-Dawley rats as well as 1-wall intrabony defect of beagle dogs. The application to the tissue-engineered macroporous scaffold and in vitro and in vivo tests was explored. Results: The extent of dissolution decreased with increasing Ca/P ratio. Exposure to either simulated body fluid or fetal bovine serum caused precipitation on the surface. The calcification and mineralization of osteoblast-like cells were enhanced by CPG. CPG promoted new bone and cementum formation in the calvarial defect of Sprague-Dawley rats after 8 weeks. The macroporous scaffolds can be fabricated with $500{\sim}800{\mu}m$ of pore size and a three-dimensionally interconnected open pore system. The stem cells were seeded continuously proliferated in CPG scaffold. Extracellular matrix and the osteocalcin were observed at the $2^{nd}$ days and $4^{th}$ week. A significant difference in new bone and cementum formations was observed in vivo (p<0.05). Conclusion: The novel calcium phosphate glass may play an integral role as potential biomaterial for regeneration of new bone and cementum.

두개결손부 모델에서 배양된 골막유래세포를 이용한 골이식 시 지지체로서 TCP의 효과 (EffeCt of tricalcium phosphate (TCP) as a scaffold during bone grafting using cultured periosteum-derived cells in a rat calvarial defect model)

  • 심경미;김세은;김종춘;배춘식;최석화;강성수
    • 한국방사선학회논문지
    • /
    • 제5권1호
    • /
    • pp.11-18
    • /
    • 2011
  • 다능성 세포를 포함하는 골막은 골모세포와 연골세포로 분화될 수 있다. 그리고 배양된 골막유래세포는 골형성 능력을 가지고 있다. 이 연구의 목적은 골막유래 세포들과 골이식재 간의 상호작용을 평가하는 것이다. Sprague-Dawley 랫드의 두개골 골막에서 세포를 분리한 다음, 배양된 골막유래세포를 beta-tricalcium phosphate (${\beta}$-TCP)와 함께 임계결손부 크기의 두개결손부에 이식하였다. 모든 랫드는 골이식 수술 후 8주째에 희생되었으며, 골이식부의 골형성 능력은 일반방사선, micro CT 및 조직검사를 통해 평가되었다. ${\beta}$-TCP와 함께 이식된 골막유래세포는 골결손부에서 더욱 증가된 석회화작용을 나타내었으며, 골결손부 안쪽 및 가장자리에 골밀도 증가와 신생골이 형성되었다. 특히 골막유래세포는 ${\beta}$-TCP만 단독으로 이식하였을때보다 함께 이식 시 효과적으로 신생골을 형성하였다. 이러한 결과는 배양된 골막유래세포가 골결손부에서 골형성을 증진시킬 수 있는 가능성을 보였다.

Effect of hydroxyapatite on critical-sized defect

  • Kim, Ryoe-Woon;Kim, Ji-Hyoung;Moon, Seong-Yong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제38권
    • /
    • pp.26.1-26.6
    • /
    • 2016
  • Background: Xenologous or synthetic graft materials are commonly used as an alternative for autografts for guided bone regeneration. The purpose of this study was to evaluate effectiveness of carbonate apatite on the critical-size bone defect of rat's calvarium. Methods: Thirty-six critical-size defects were created on 18 adult male Sprague-Dawley rat calvaria under general anesthesia. Calvarial bones were grinded with 8 mm in daimeter bilaterally and then filled with (1) no grafts (control, n = 10 defects), (2) bovine bone mineral (Bio-$Oss^{(R)}$, Geistlich Pharma Ag. Swiss, n = 11 defects), and (3) hydroxyapatite ($Bongros^{(R)}$, Bio@ Inc., Seongnam, Korea, n = 15 defects). At 4 and 8 weeks after surgery, the rats were sacrificed and all samples were processed for histological and histomorphometric analysis. Results: At 4 weeks after surgery, group 3 ($42.90{\pm}9.33%$) showed a significant difference (p < 0.05) compared to the control ($30.50{\pm}6.05%$) and group 2 ($28.53{\pm}8.62%$). At 8 weeks after surgery, group 1 ($50.21{\pm}6.23%$), group 2 ($54.12{\pm}10.54%$), and group 3 ($50.92{\pm}6.05%$) showed no significant difference in the new bone formation. Conclusions: $Bongros^{(R)}$-HA was thought to be the available material for regenerating the new bone formation.

백서 두개골 결손부의 골 대체물 이식과 홍화씨 섭취 후의 치유양상 (Healing after Implantation of Bone Substitutes and Safflower Seeds Feeding in Rat Calvarial Defects)

  • 유경태;최광수;윤기연;김은철;유형근;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제30권1호
    • /
    • pp.91-104
    • /
    • 2000
  • Many synthetic bone materials have been studied for their potential of regenerative effects in periodontal tissue. Safflower seeds have been traditionally used as a drug for the treatment of fracture and blood stasis in oriental medicines. The purpose of this study was to assess and compare the osseous responses in rat calvarial defects between bone substitutes such as calcium carbonate and bovine-derived hydroxyapatite and feeding of safflower seeds. The calvarial defects were made with 8 mm trephine bur in 24 Sprague-Dawley rats. Two graft materials were implanted in each experimental groups, whereas the control and safflower seed feeding groups were sutured without any other treatment. And then the rats of safflower seed feeding group were supplied with 3 g/day of safflower seeds. Each group was sacrificed at 4 weeks and 8 weeks. To study a histopathology related to bone healing and regeneration, Goldner's Masson Trichrome stain was done at each weeks. The tissue response was evaluated under light microscope. There were more osteoblastic activity, new bone formation, dense bony connective tissues in bovine-derived hydroxyapatite group compared to other groups at 8 weeks. The osseous defect area of safflower seed feeding group was filled with prominent fibrous tissues, where less inflammatory infiltration and new capillary proliferation. In the early phase of bone healing, safflower seed feeding reduces the inflammatory response and promotes the proliferation of connective tissue. These results suggest that natural bovine-derived HA and safflower seed feeding could enhance the regenerative potential in periodontal defects.

  • PDF

랫드의 두개골결손부 모델에서 HA/PCL 지지체를 사용한 골이식 시 Matrigel의 효과 (Effect of Matrigel for Bone Graft using Hydroxyapatite/Poly $\varepsilon$-caprolactone Scaffold in a Rat Calvarial Defect Model)

  • 김세은;심경미;김승언;최석화;배춘식;한호재;강성수
    • 한국임상수의학회지
    • /
    • 제27권4호
    • /
    • pp.325-329
    • /
    • 2010
  • 본 연구에서는 hydroxyapatite/poly $\varepsilon$-caprolactone composite (HA/PCL) 지지체와 matrigel을 랫드의 두개골 결손부 모델에 함께 이식 시의 골형성 정도를 평가하였다. 두개골결손부는 Sprague Dawley rat (n = 18)에서 수술적으로 형성하였으며 실험군은 Matrigel과 함께 HA/PCL 지지체를 이식한 군(M-HA/PCL group, n = 6)과 HA/PCL 지지체단독이식군(HA/PCL group, n = 6)으로 나누었고 대조군(CD group, n = 6)에는 아무 것도 이식하지 않았다. 수술 4주 후, 골형성은 방사선촬영, micro CT 및 조직검사를 통해 평가되었다. 방사선상에서 CD군의 골형성은 관찰되지 않았으나 HA/PCL과 M-HA/PCL군에서는 관찰되었고 골과 유사한 방사선비투과성이 M-HA/PCL군에서 더 많이 관찰되었다. Micro CT 평가에서 골부피는 HA/PCL군보다 M-HA/PCL군에서 더 높았으나 두 군 사이의 유의적 차이는 관찰할 수 없었다. 그러나 골밀도에서는 HA/PCL군보다 M-HA/PCL군이 더 유의적으로 높음을 확인할 수 있었다(p < 0.05). 조직학적 검사에서는 CD군에서 새로운 골은 원래 존재하던 골로부터만 형성되었으며 두개골결손부 내의 골형성은 보이지 않았다. HA/PCL군에서 새로운 골형성은 원래 존재하던 골로부터만 유래되었으나 M-HA/PCL군은 가장 많은 골형성을 보여주었으며 새로운 골이 원래 존재하던 골과 HA/PCL지지체 주변에서도 관찰되었다. 이러한 결과로 미루어볼 때 HA/PCL 지지체와 matrigel을 함께 사용하는 것이 골의 임계결손부에서 골형성을 증대시키는 효과적인 방법이 될 수 있을 것으로 생각된다.

Bone Formation Effect of the RGD-bioconjugated Mussel Adhesive Proteins Composite Hydroxypropyl Methylcellulose Hydrogel Based Nano Hydroxyapatite and Collagen Membrane in Rabbits

  • Kim, Dong-Myong;Kim, Hyun-Cho;Yeun, Chang-Ho;Lee, Che-Hyun;Lee, Un-Yun;Lim, Hun-Yu;Chang, Young-An;Kim, Young-Dae;Choi, Sung-Ju;Lee, Chong-Suk;Cha, Hyung Joon
    • 한국해양바이오학회지
    • /
    • 제7권2호
    • /
    • pp.58-70
    • /
    • 2015
  • Injectable RGD-bioconjugated Mussel Adhesive Proteins (RGD-MAPs) composite hydroxypropyl methylcellulose (HPMC) hydrogels provide local periodontal tissue for bone filling in periodontal surgery. Previously we developed a novel type of injectable self-supported hydrogel (2 mg/ml of RGD-MAPs/HPMC) based porcine nano hydroxyapatite (MPH) for dental graft, which could good handling property, biodegradation or biocompatibility with the hydrogel disassembly and provided efficient cell adhesion activity and no inflammatory responses. Herein, the aim of this work was to evaluate bone formation following implantation of MPH and collagen membrane in rabbit calvarial defects. Eight male New Zealand rabbits were used and four circular calvarial defects were created on each animal. Defects were filled with different graft materials: 1) collagen membrane, 2) collagen membrane with MPH, 3) collagen membrane with bovine bone hydroxyapatite (BBH), and 4) control. The animals were sacrificed after 2 and 8 weeks of healing periods for histologic analysis. Both sites receiving MPH and BBH showed statistically increased augmented volume and new bone formation (p < 0.05). However, there was no statistical difference in new bone formation between the MPH, BBH and collagen membrane group at all healing periods. Within the limits of this study, collagen membrane with MPH was an effective material for bone formation and space maintaining in rabbit calvarial defects.