• 제목/요약/키워드: Calvaria

검색결과 130건 처리시간 0.027초

Regenerative capacity of augmented bone in rat calvarial guided bone augmentation model

  • Kubota, Tatsuya;Hasuike, Akira;Ozawa, Yasumasa;Yamamoto, Takanobu;Tsunori, Katsuyoshi;Yamada, Yutaka;Sato, Shuichi
    • Journal of Periodontal and Implant Science
    • /
    • 제47권2호
    • /
    • pp.77-85
    • /
    • 2017
  • Purpose: Guided bone regeneration (GBR) is the most widely used technique to regenerate and augment bones. Even though augmented bones (ABs) have been examined histologically in many studies, few studies have been conducted to examine the biological potential of these bones and the healing dynamics following their use. Moreover, whether the bone obtained from the GBR procedure possesses the same functions as the existing autogenous bone is uncertain. In particular, little attention has been paid to the regenerative ability of GBR bone. Therefore, the present study histologically evaluated the regenerative capacity of AB in the occlusive space of a rat guided bone augmentation (GBA) model. Methods: The calvaria of 30 rats were exposed, and plastic caps were placed on the right of the calvaria in 10 of the 30 rats. After a 12-week healing phase, critical-sized calvarial bone defects (diameter: 5.0 mm) were trephined into the dorsal parietal bone on the left of the calvaria. Bone particles were harvested from the AB or the cortical bone (CB) using a bone scraper and transplanted into the critical defects. Results: The newly generated bone at the defects' edge was evaluated using micro-computed tomography (micro-CT) and histological sections. In the micro-CT analysis, the radiopacity in both the augmented and the CB groups remained high throughout the observational period. In the histological analysis, the closure rate of the CB was significantly higher than in the AB group. The numbers of cells positive for runt-related transcription factor 2 (Runx2) and tartrate-resistant acid phosphatase (TRAP) in the AB group were larger than in the CB group. Conclusions: The regenerative capacity of AB in the occlusive space of the rat GBA model was confirmed. Within the limitations of this study, the regenerative ability of the AB particulate transplant was inferior to that of the CB particulate transplant.

RP titanium cap과 rhBMP-2를 이용하여 형성된 신생골의 미세전산화단층촬영을 이용한 평가 (Evaluation of bone formation by recombinant human BMP-2 and rapid prototype titanium cap in rabbit calvaria using micro computed tomography)

  • 한만승;정승곤;김방신;양지웅;국민석;박홍주;유선열;오희균
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권6호
    • /
    • pp.466-472
    • /
    • 2010
  • Introduction: This study examined the effect of recombinant human bone morphogenetic protein (rhBMP)-2 and $\beta$-tricalcium phosphate ($\beta$-TCP) on new bone formation in a rabbit calvarium using a rapid prototype titanium cap (RP Ti cap). Materials and Methods: Eight New Zealand white rabbits were used in this study. Hemispherical RP Ti caps (10 mm in diameter) were implanted subperiosteally on the rabbit calvaria. $\beta$-TCP was filled in the RP Ti cap in the control group, and rhBMP-2 soaked $\beta$-TCP was used in experimental group. The rabbits were sacrificed 2 and 4 weeks after the operation. The volume and pattern of newly formed bone was analyzed by micro computed tomography (CT). Results: Macroscopically, there were no abnormal findings in any of the animals. The micro CT images revealed new bone from the calvaria that expanded gradually toward the top of the titanium cap, particularly along the inner surface of the titanium cap in the experimental group at 4 weeks after grafting. There was no significant difference in new bone volume ratio between the control and experimental groups at 2 weeks after grafting. There was a statistically significant difference in the new bone volume ratio between the experimental ($14.1{\pm}1.8\;%$) and control ($7.2{\pm}1.5\;%$) groups at 4 weeks after grafting (P<0.01). Conclusion: The RP Ti cap can effectively guide new bone formation and rhBMP-2 can induce the new bone formation.

골형태형성단백질이 백서치주인대세포와 두개관세포에 미치는 영향 (A Study of the Effects of Bone Morphogenetic Protein on the Characteristics of Rat Periodontal Ligament and Calvaria Cells)

  • 최진근;이만섭;권영혁;허익
    • Journal of Periodontal and Implant Science
    • /
    • 제29권4호
    • /
    • pp.765-785
    • /
    • 1999
  • Bone morphogenetic protein-2/4 (BMP-2/4) are members of Transforming Growth $Factor-{\beta}\;(TGF-{\beta})$ superfamily and they may differentiate the osteoprogenitor cell and induce formation of cartilage and bone in vivo. This study was performed to investigate the effects of bone morphogenetic protein-2/4 on the characteristics of rat periodontal ligament cells(RPDL) and rat calvaria cells(RCV). In the control group, the cells were cultured alone with Dulbeco's Modified Eagle's Medium contained with 20% fetal bovine serum, $100{\mu}/ml$ penicillin, $100{\mu}/ml$ streptomycin. In the experimental groups, recombinant human bone morphogenetic protein-2/4 (25ng, 100ng, 250ng/ml) were added into the above culture condition. And then each group was characterized by examing the cell proliferation at 1, 2, 3, 5, 7th day, the amount of total protein synthesis and alkaline phosphatase activity at 2, 5, 7th day. And also, the calcified nodule was examed. The results were as follows ; 1 . Both RCV and RPDL cells in both control and experimental groups proliferated during the entire experimental period, but there is no stastically significant difference according to the BMP-2/4 concentration. 2 . Amount of total protein synthesis of both cells in both groups was steadily increased until 5th day, but all experimental groups were significantly different from the control group at 7th day. 3. Alkaline phosphatase activity of both cells in both groups was increased during the entire experiment period. In RCV cells, the experimental group treated with 100ng/ml and 250ng/ml BMP-2/4 were significantly different from the control group at 7th day. In RPDL cells, the experimental group treated with 100ng/ml and 250ng/ml BMP-2/4 were significantly different from the control group at 5th day, and all experimental groups were significantly different from the control group at 7th day. 4. In the both of the cultured Rat Periodontal ligament and calvaria cell treated with BMP-2/4 to compared with control group, it revealed more rapid cell polarization, cell aggregation and hyperchromatic stained on HE agent, and even though only 1 day treated with BMP-2/4 both RPDL and RCV showed more rapid cell reaction than control group. More sensivitve cell reaction of RCV were observed than RPDL in this experiment. From the above results, we could conclude that BMP-2/4 influenced the induction, proliferation and differentiation of bone forming cells

  • PDF

핀 고정 천공형 티타늄막을 이용한 수직적 체조제증대술에 관한 연구 (Exophytic bone formation using porous titanium membrane combined with pins in rabbit calvarium.)

  • 김영;권영혁;박준봉;허익;정종혁
    • Journal of Periodontal and Implant Science
    • /
    • 제36권2호
    • /
    • pp.273-288
    • /
    • 2006
  • The purpose of this study was to evaluate exophytically vertical bone formation in rabbit calvaria by the concept of guided bone regeneration with a custom-made porous titanium membrane combined with bone graft materials. For this purpose, a total of 12 rabbits were used, and decorticated calvaria were created with round carbide bur to promote bleeding and blood clot formation in the wound area. Porous titanium membranes (0.5 mm in pore diameter, 10 mm in one side, 2 mm in inner height) were placed on the decorticated calvaria, fixed with metal pins and covered with full-thickness flap. Experimental group I was treated as titanium membrane only. Experimental group II, III, IV was treated as titanium membrane with BBM, titanium membrane with DFDB and titanium membrane with FDB. The animals were sacrificed at 8 and 12 weeks after surgery, and new bone formation was assessed by histomorphometric as well as statistical analysis. 1. Porous titanium membrane was biocompatable and capable of maintaining the regeneration space. 2. At 8 and 12 weeks, all groups demonstrated exophytic bone formation and there was a statistical significant difference among different groups only at 12 weeks. 3. The DFDB group revealed the most new bone formation compared to other groups (p<0.05). 4. At 12 weeks, DFDB and FDB groups showed the most significant resorption of graft materials (p<0.05). 5. The BBM was not resorbed at all until 12 weeks. 6. The fixation metal pin revealed excellent effect in peripheral sealing. On the basis of these findings, we conclude that a porous titanium membrane may be used as an augmentation membrane for guided bone regeneration, and DFDB as an effective bone forming graft material. The fixation of the membrane with pin will be helpful in GBR technique. However, further study is required to examine their efficacy in the intraoral experiments.

Stimulation of Ovarian Development in a Tropical Damselfish by Prolonged Photoperiod using Pellets Containing Long-afterglow Phosphorescent Pigment

  • Imamura, Satoshi;Bapary, Mohammad Abu Jafor;Takeuchi, Yuki;Hur, Sung-Pyo;Takemura, Akihiro
    • Fisheries and Aquatic Sciences
    • /
    • 제17권2호
    • /
    • pp.223-227
    • /
    • 2014
  • The present study examined whether light emitted by long-afterglow phosphorescent pigments (LumiNova) would stimulate gonadal development in fish during the nonbreeding season. Pellets containing LumiNova powder (treatment group) were prepared and placed on the calvaria of specimens of the sapphire devil Chrysiptera cyanea, a reef-associated damselfish that requires long days for gonadal recrudescence. A pellet without LumiNova powder was placed on the calvaria of the control fish (control group). Fish were reared at $26^{\circ}C$ under a light-dark cycle (12 h photophase, 12 h scotophase; LD 12:12) for 4 weeks. No difference in the gonadosomatic index (GSI) or ovarian histology was observed among the control, sham-operation, and treatment groups 1 week after the start of the experiment. After 4 weeks, the GSI of the control and sham-operation groups remained at low levels, and ovaries contained immature oocytes at the perinucleolus stage. In contrast, the treatment group exhibited significantly higher values of GSI as well as developed ovaries with fully vitellogenic oocytes. These results demonstrated that long-day conditions were produced by light emitted from the LumiNova pellets, thus stimulating ovarian development in the damselfish. Therefore, long-afterglow phosphorescent pigments can be used as an alternative to standard light sources for purposes of artificial stimulation of gonadal development in fish.

생약추출물이 Intrerleukin-1 ${\beta}$의 생성 및 활성에 미치는 영향 (THE EFFECTS OF HERBAL EXTRACTS ON PRODUCTION AND ACTIVlTY OF INTERLEUKIN 1${\beta}$)

  • 조기영;이용무;최상묵;정종평
    • Journal of Periodontal and Implant Science
    • /
    • 제25권2호
    • /
    • pp.386-396
    • /
    • 1995
  • Interieukin 1${\beta}$ is a potent bone resorptive cytokine which mediates soft tissue destruction through the stimulatidn of prostaglandin production and the induction of collagenase. This constellation of activities suggests a role of IL-1${\beta}$ in the pathogenesis of periodontal disease. The purpose of this study was to evaluate the effects of herbal extracts on production and activity of IL-1${\beta}$. When LPS was added to cultured human blood monocytes, the effects of herbal extracts on the production of IL-1${\beta}$ was evaluate by thymocyte stimulation assay. When rHuIL-1${\beta}$ was added to cultured human gingival fibroblasts, the effects of herbal extracts on production of $PGE_2$ was evaluated by ELISA and when it was added to cultured mouse calvaria, the effects on bone resorption was estimated by .$^{45}Ca$-release bone resorption assay. The herbal extracts that had been used in this study were as follows; Asparagi Radix, Schzandrae Fractus, Zizyphi Fractus and Rhois Galla. The following results were obtained from this study. 1. All these extracts effectively inhibited the production of IL-1${\beta}$ on cultured human blood monocytes. 2. All these extracts effectively inibited the production of $PGE_2$ on cultured human gingival fibroblasts. 3. All these extracts did not effectively inhibit the bone resorption induced by rHulL-1${\beta}$ on cultured mouse calvaria.

  • PDF

백서 두개부 결손부에 이식된 이종골 치유과정에 히알루론산이 미치는 영향에 관한 연구 (THE EFFECT OF HYALURONIC ACID ON XENOGRAFT IN RAT CALVARIAL DEFECT)

  • 조이수;민승기
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제28권3호
    • /
    • pp.205-215
    • /
    • 2002
  • The purpose of this study was to evaluate the tissue response in various bone grafting materials, especially xenogenous bone materials in vivo, compare of bone formation capacity of various bone grafting materials on rat skull defects and evaluate the effect of Hyaluronic acid on healing of human Demineralized Freezed Dried Bone allogenous graft (DFDBA) materials in rat calvarial defects. 30 Sprague-Dawly rats were divided into 4 groups. $7{\times}7mm$ size bony defect were artificially prepared in the calvaria (both parietal bone) of all 30 rats and follwed group grafting of autogenous bone graft on right side and allogenic DFDBA on left side bone graft (rat DFDB) in 15 control group, but in 15 experimental group, xenograft (human DFDB) on left side, hyaluronic acid treated with xenograft on right side. Sequential sacrifices was performed at 1, 2, 4, 6, 8 weeks of experiment. These specimens were stained with H&E and MT stain, and then histologic analysis under light microscope was carried out. There were inflammatory reaction in all graft material during early stage. Autogenous and Allogenous DFDBA graft group observed inflammatory reaction at 1 week. Xenograft group persistant inflammatory reaction until 4 weeks, but in HA treated xenograft group inflammatory reaction was decreased at 2 weeks. Osteoblastic activity in control group was begun at 2 week, xenograft group was delayed at 6 weeks, however HA treated xenograft group was begun at 4 weeks. At 2 week, mild osteoclastic activity were observed in all xenograft group not in concerned to HA, but there was no difference each group after 4 weeks. There are most activated angiogenesis around graft mateirals in xenograft group at 2 weeks, but in HA treated xenograft group, decreased angiogenesis was observed at same time. Bone formation and bone maturation of xenograft group, there was no difference in HA treatment, was less than control group. Fibrosis around xenograft materials were observed until 6 weeks, there was no difference between xenograft and HA treated groups.

복합 및 유격배양한 섬유모세포가 마우스 두개관 미분화간엽세포의 골세포 분화에 미치는 영향 (INFLUENCE OF CO-CULTURED FIBROBLASTS ON THE DIFFERENTIATION OF MOUSE CALVARIA-DERIVED UNDIFFERENTIATED MESENCHYMAL CELLS IN VITRO)

  • 황유선;김명래
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제28권2호
    • /
    • pp.114-125
    • /
    • 2002
  • This study was designed to evaluate the influence of fibroblasts or connective tissue from mouse oral mucosa on differentiation of neonatal mouse calvaria-derived osteoblasts and mineralization of bone nodules. Primary cell cultures from mouse calvarial osteoblasts and 2-4 passaged fibroblasts from oral mucosa were co-cultured in monolayer cultures, devided into 6 experimental group according to cell density or cell confluency. Osteoblasts were also co-cultured with fibroblasts in $Transwell^{(R)}$ culture plate with different co-cultured period according to osteoblast differentiation. The alkaline phosphatase activity were measured in monolayer cultures and cultures using $Transwell^{(R)}$. The mineralized bone nodules were presented by Von Kossa staining and density of mineralized nodules was measured by image analysis. The connective tissues with or without osteoblast seeding were cultured and examined histologically by Von Kossa and Trichrome Goldner staining. The results were as follows; 1. Prolonged maturation of matrix and delayed mineralization of bone nodules were resulted in monolayer cultures. 2. Co-culture of fibroblast with osteoblast using $Transwell^{(R)}$ during osteoblast proliferation stage stimulated proliferation of osteoblasts and increased alkaline phosphatase activity and mineralization of bone nodules. 3. Co-culture of fibroblast with osteoblast using $Transwell^{(R)}$ during matrix mineralization stage decreased and delayed mineralization of bone nodules. 4. In vitro cultured connective tissue with osteoblast seeding resulted in proliferation of osteoblasts and matrix formation with mineralization.