• Title/Summary/Keyword: Calorimetry

Search Result 1,165, Processing Time 0.028 seconds

Identification and confirmation of 14-3-3 ζ as a novel target of ginsenosides in brain tissues

  • Chen, Feiyan;Chen, Lin;Liang, Weifeng;Zhang, Zhengguang;Li, Jiao;Zheng, Wan;Zhu, Zhu;Zhu, Jiapeng;Zhao, Yunan
    • Journal of Ginseng Research
    • /
    • v.45 no.4
    • /
    • pp.465-472
    • /
    • 2021
  • Background: Ginseng can help regulate brain excitability, promote learning and memory, and resist cerebral ischemia in the central nervous system. Ginsenosides are the major effective compounds of Ginseng, but their protein targets in the brain have not been determined. Methods: We screened proteins that interact with the main components of ginseng (ginsenosides) by affinity chromatography and identified the 14-3-3 ζ protein as a potential target of ginsenosides in brain tissues. Results: Biolayer interferometry (BLI) analysis showed that 20(S)-protopanaxadiol (PPD), a ginseng saponin metabolite, exhibited the highest direct interaction to the 14-3-3 ζ protein. Subsequently, BLI kinetics analysis and isothermal titration calorimetry (ITC) assay showed that PPD specifically bound to the 14-3-3 ζ protein. The cocrystal structure of the 14-3-3 ζ protein-PPD complex showed that the main interactions occurred between the residues R56, R127, and Y128 of the 14-3-3 ζ protein and a portion of PPD. Moreover, mutating any of the above residues resulted in a significant decrease of affinity between PPD and the 14-3-3 ζ protein. Conclusion: Our results indicate the 14-3-3 ζ protein is the target of PPD, a ginsenoside metabolite. Crystallographic and mutagenesis studies suggest a direct interaction between PPD and the 14-3-3 ζ protein. This finding can help in the development of small-molecular compounds that bind to the 14-3-3 ζ protein on the basis of the structure of dammarane-type triterpenoid.

A study on the comparative test of chemical and thermal properties of virgin and recycled PET products (버진 및 리사이클 PET 제품의 화학적·열적 특성 비교시험에 관한 연구)

  • Kim, Kyoung Pil;Seo, Kyung Jin;Park, Soo-Yong;Chung, Ildoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.33-39
    • /
    • 2021
  • As the interest and demand in the recycled yarn field has increased rapidly worldwide, domestic companies are also promoting research and development and business on recycled yarn. The chemical and thermal properties of four types of virgin and recycled PET samples from A and B company, which are the leading domestic companies in the recycled polyester yarn business, were confirmed through infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC). Virgin and recycled PET from two companies were compared. FT-IR spectroscopy revealed the typical spectra of PET for both companies and a different peak at 872 cm-1. DSC confirmed that the melting point and crystallization temperature of recycled PET were lower than those of virgin PET. These results indicate that small amounts of contaminants are an important parameter affecting the thermal properties of recycled PET. In the DSC results after seven repeats of the heating and cooling processes, all four samples showed that a lower melting point, crystallization temperature, and low heat flow intensity increased with increasing number of cycles. The results of melting and crystallization enthalpy also showed similar patterns.

Development of a novel combination tablet containing silodosin and solifenacin succinate for the treatment of urination disorder (배뇨 장애 치료를 위한 실로도신과 솔리페나신 숙신산염 함유한 새로운 복합 정제 개발)

  • Choi, Hyung-Joo;Lee, Jeong-Gyun;Kim, Kyeong Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.323-332
    • /
    • 2021
  • This study was undertaken to develop a new combination tablet containing silodosin and solifenacin succinate for treating urination disorders, for which a simultaneous analytical method of silodosin and solifenacin succinate was established. The aqueous solubility of silodosin and solifenacin succinate was determined to be higher than 1 mg/ml in various buffers, and dissolution of the silodosin and solifenacin succinate commercial products was accomplished within 30 minutes. The drug-excipients compatibility test was subsequently evaluated using differential scanning calorimetry. Excipients without compatibility were selected, and various combination formulations were prepared applying the wet granulation method. Of these, the formulation comprising silodosin, solifenacin succinate, lactose hydrate, MCC PH101, sodium lauryl sulfate (SLS), Povidone K30, crospovidone and magnesium stearate, having a weight ratio of 8/10/56/112/2/6/6/2, respectively, showed equivalence comparative to the dissolution achieved with the commercial products of silodosin (Thrupas tab) and solifenacin succinate (Vesicare tab). Thus, we propose that compared to the currently available commercial products, this novel combination tablet containing silodosin and solifenacin succinate is an effective alternative for the treatment of urination disorders.

Experimental Evaluation of Hydrate Formation and Mechanical Properties of Limestone Calcined Clay Cement (LC3) According to Calcination Temperature of Low-Quality Kaolin Clay in Korea (국산 저품질 고령토의 소성온도에 따른 석회석 소성점토 시멘트(LC3)의 수화물 생성 및 기계적 특성 평가)

  • Moon, Jae-Geun;Her, Sung-Wun;Cho, Seong-Min;Bae, Sung-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.252-260
    • /
    • 2022
  • In Korea, low-quality kaolin has significantly greater reserves and superior economic efficiency than high-purity kaolin. However, the utilization is low because it does not match the demand conditions of the market, and it is difficult to find a suitable source of demand. The purpose of this study is to derive the possibility and optimal calcination temperature of domestic low-quality kaolin that can be used as a raw material for limestone plastic clay cement (LC3). Isothermal calorimetry, X-ray diffraction analysis, Thermogravimetric Analysis, and compressive strength tests were conducted to evaluate hydrate generation and mechanical properties of LC3 paste according to calcination temperatures (600 ℃, 700 ℃, 800 ℃, 900 ℃). As a result, although 50 % of the clinker was replaced, the domestic low-quality kaolin clay produced calboaluminate hydrate and C(A)SH from the 3rd day of hydration, showing almost equal or higher strength to OPC, and there was a big difference in strength depending on the firing temperature.

Evaluating and predicting net energy value of wheat and wheat bran for broiler chickens

  • Ning, Ran;Cheng, Zichen;Liu, Xingbo;Ban, Zhibin;Guo, Yuming;Nie, Wei
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1760-1770
    • /
    • 2022
  • Objective: It is crucial to accurately determine the net energy (NE) values of feed ingredients because the NE system is expected to be applied to the formulation of broilers feed. The NE values of 5 wheat and 5 wheat brans were determined in 12-to 14-day old Arbor Acres (AA) broilers with substitution method and indirect calorimetry method. Methods: A total of 12 diets, including 2 reference diets (REF) and 10 test diets (5 wheat diets and 5 wheat bran diets) containing 30% of test ingredients, were randomly fed to 864 male AA birds with 6 replicates of 12 birds per treatment. These birds were used to determine metabolizable energy (ME) (8 birds per replicate) in the chicken house and NE (4 birds per replicate) in the chamber respectively at the same time. After a 4-d dietary and environment adaptation period, growth performance, energy values, energy balance and energy utilization were measured during the following 3 d. Multiple linear regression analyses were further performed to generate prediction equations for NE values based on the chemical components and ME values. The NE prediction equation were also validated on another wheat diet and another wheat bran diet with high correlation (r = 0.98, r = 0.75). Results: The NE values of 5 wheat and 5 wheat bran samples are 9.34, 10.02, 10.27, 11.33, and 10.49 MJ/kg, and 5.37, 5.17, 4.87, 5.06, and 4.88 MJ/kg DM, respectively. The equation with the best fit were NE = 1.968AME-0.411×ADF-14.227 (for wheat) and NE = -0.382×CF-0.362×CP-0.244×ADF+20.870 (for wheat bran). Conclusion: The mean NE values of wheat and wheat bran are 10.29 and 5.07 MJ/kg DM in AA broilers. The NE values of ingredients could be predicted by their chemical composition and energy value with good fitness.

Dynamic of heat production partitioning in rooster by indirect calorimetry

  • Rony Lizana, Riveros;Rosiane, de Sousa Camargos;Marcos, Macari;Matheus, de Paula Reis;Bruno Balbino, Leme;Nilva Kazue, Sakomura
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.75-83
    • /
    • 2023
  • Objective: The objective of this study was to describe a methodological procedure to quantify the heat production (HP) partitioning in basal metabolism or fasting heat production (FHP), heat production due to physical activity (HPA), and the thermic effect of feeding (TEF) in roosters. Methods: Eighteen 54-wk-old Hy Line Brown roosters (2.916±0.15 kg) were allocated in an open-circuit chamber of respirometry for O2 consumption (VO2), CO2 production (VCO2), and physical activity (PA) measurements, under environmental comfort conditions, following the protocol: adaptation (3 d), ad libitum feeding (1 d), and fasting conditions (1 d). The Brouwer equation was used to calculate the HP from VO2 and VCO2. The plateau-FHP (parameter L) was estimated through the broken line model: HP = U×(R-t)×I+L; I = 1 if t<R or I = 0 if t>R; Where the broken-point (R) was assigned as the time (t) that defined the difference between a short and long fasting period, I is conditional, and U is the decreasing rate after the feed was withdrawn. The HP components description was characterized by three events: ad libitum feeding and short and long fasting periods. Linear regression was adjusted between physical activity (PA) and HP to determine the HPA and to estimate the standardized FHP (st-FHP) as the intercept of PA = 0. Results: The time when plateau-FHP was reached at 11.7 h after withdrawal feed, with a mean value of 386 kJ/kg0.75/d, differing in 32 kJ from st-FHP (354 kJ/kg0.75/d). The slope of HP per unit of PA was 4.52 kJ/mV. The total HP in roosters partitioned into the st-FHP, termal effect of feeding (TEF), and HPA was 56.6%, 25.7%, and 17.7%, respectively. Conclusion: The FHP represents the largest fraction of energy expenditure in roosters, followed by the TEF. Furthermore, the PA increased the variation of HP measurements.

Effect of Surface Modification of Calcium Carbonate Nanoparticles by Octyltrimethoxysilane on the Stability of Emulsion and Foam (실란 커플링제 옥틸트리메톡시실란에 의해 표면 개질된 탄산칼슘 나노입자가 에멀젼 및 기포 안정성에 미치는 영향)

  • Lim, Jong Choo;Park, Ki Ho;Lee, Jeong Min;Shin, Hee Dong
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.386-393
    • /
    • 2022
  • In this study, the surface modification of calcium carbonate (CaCO3) nanoparticles by a silane coupling agent, octyltrimethoxysilane (OTMS), was investigated and characterized using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) analysis. Both floating tests and contact angle measurements were also conducted to study the effect of OTMS concentration on the hydrophobicity of CaCO3 nanoparticles. It was found that the active ratio for the CaCO3 nanoparticles modified by 1 wt% of OTMS was 97.0 ± 0.5%, indicating that OTMS is a very effective silane coupling agent in enhancing the hydrophobicity of the CaCO3 nanoparticle surface. The most stable foam was generated with 1 wt% of CaCO3 nanoparticles in aqueous solutions at 1 wt% of OTMS, where the contact angle of water was found to be 91.8 ± 0.7°. It was also found that the most stable emulsion drops were formed at the same OTMS concentration. These results suggest that CaCO3 nanoparticles modified by a silane coupling agent OTMS are a powerful candidate for a foam stabilizer or an emulsifier in many industrial applications.

Validation of a physical activity classification table in Korean adults and elderly using a doubly labeled water method (한국 성인과 노인을 대상으로 이중표식수법을 이용한 신체활동분류표 타당도 평가)

  • Hye-Ji Han ;Ha-Yeon Jun;Jonghoon Park;Kazuko Ishikawa-Takata;Eun-Kyung Kim
    • Journal of Nutrition and Health
    • /
    • v.56 no.4
    • /
    • pp.391-403
    • /
    • 2023
  • Purpose: This study evaluated the validity of a physical activity classification table (PACT) based on total energy expenditure (TEE) and physical activity level (PAL) measured using the doubly labeled water (DLW) method in Korean adults and the elderly. Methods: A total of 141 (male 70, female 71) adults and elderly were included. The reference standards TEEDLW, PALDLW were measured over a 14-day period using DLW. A 24-hour physical activity diary was kept for three days (two days during the week and one day on the weekend). PALPACT was calculated by classifying the activity type and intensity using the PACT. PALPACT was multiplied by resting energy expenditure measured by indirect calorimetry to estimate TEEPACT. Results: The mean age of the study participants was 50.5 ± 18.8 years, and the mean body mass index was 23.4 ± 3.3 kg/m2. A comparison of TEEDLW and TEEPACT by sex and age showed no significant differences. The bias, the difference between TEEDLW and TEEPACT, was male 17.3 kcal/day and female -4.5 kcal/day. The percentage of accurate predictions (values within ± 10% of the TEEDLW) of TEEPACT was 58.6% in males and 54.9% in females, with the highest prediction values in the age group 40-64 years (70.9%) in males and over 65 years (73.9%) in females. The spearman correlation coefficient (r) between TEEPACT and TEEDLW was 0.769, indicating a significant positive correlation (p < 0.001). Conclusion: In this study, the use of a new PACT for calculating TEE and PAL was evaluated as valid. A web version of the software program and a smartphone application need to be developed using PACT to make it easier to apply for research purposes.

Thermal Performance Evaluation of Composite Phase Change Material Developed Through Sol-Gel Process (졸겔공법을 이용한 복합상변화물질의 열성능 평가)

  • Jin, Xinghan;Haider, Muhammad Zeeshan;Park, Min-Woo;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.555-566
    • /
    • 2023
  • In this study, a composite phase change material (CPCM) produced using the SOL-GEL technique was developed as a thermal energy storage medium for low-temperature applications. Tetradecane and activated carbon (AC) were used as the core and supporting materials, respectively. The tetradecane phase change material (PCM) was impregnated into the porous structure of AC using the vacuum impregnation method, and a thin layer of silica gel was coated on the prepared composite using the SOL-GEL process, where tetraethyl orthosilicate (TEOS) was used as the silica source. The thermal performance of the CPCM was analysed using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC results showed that the pure tetradecane PCM had melting and freezing temperatures of 6.4℃ and 1.3℃ and corresponding enthalpies 226 J/g and 223.8 J/g, respectively. The CPCM exhibited enthalpy of 32.98 J/g and 27.7 J/g during the melting and freezing processes at 7.1℃ and 2.4℃, respectively. TGA test results revealed that the AC is thermally stable up to 500℃, which is much higher than the decomposition temperature of the pure tetradecane, which is around 120℃. Moreover, in the case of AC-PCM and CPCM thermal degradation started at 80℃ and 100℃, respectively. The chemical stability of the CPCM was studied using Fourier-transform infrared (FT-IR) spectroscopy, and the results confirmed that the developed composite is chemically stable. Finally, the surface morphology of the AC and CPCM was analysed using scanning electron microscopy (SEM), which confirmed the presence of a thin layer of silica gel on the AC surface after the SOL-GEL process.

Manufacturing Properties and Hardening Characteristic of CO2 Reactive Hardening Cement (이산화탄소 반응경화 시멘트 제조 및 경화특성 연구)

  • Ki-Yeon Moon;Byung-Ryeol Kim;Seung-Han Lee;Moon-Kwan Choi;Kye-Hong Cho;Jin-Sang Cho
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.52-59
    • /
    • 2022
  • Calcium silicate based cement (CSC) is a low-carbon cement that emits less CO2 by up to 70% compared to ordinary Portland cement during its manufacture. Most developed countries have commercialized CSC, whereas Korea is still investigating the manufacturing characteristics and basic properties of CSC. This paper provides a review of methods for manufacturing CSC using domestic raw materials and discusses the possibility of CSC localization based on an evaluation of the basic physical properties of manufactured CSC. The experimental results of this study indicate that the primary mineral components of CSC were CS, C3S2 C2S, and unreacted SiO2. This suggests the possibility of manufacturing CSC using domestic raw materials that exhibit mineral compositions similar to that of theoretical CSC. The compressive strength of CSC mortar is less than 1MPa at the age of 7 d under wet curing. This implies that hydration does not affect the property development of CSC mortar. Meanwhile, during carbonation curing, the compressive strength is 56 MPa or higher after 7 d, which indicates excellent early strength development. Furthermore, results of Thermogravimetric Analysis Differential scanning calorimetry (TG/DSC) show that a significant amount of CaCO3 is formed, which is consistent with the results of previous studies. This implies that carbonation is associated significantly with the properties of CSC.