• 제목/요약/키워드: Calmodulin

검색결과 268건 처리시간 0.037초

Ca2+/calmodulin-dependent regulation of polycystic kidney disease 2-like-1 by binding at C-terminal domain

  • Baik, Julia Young;Park, Eunice Yon June;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권3호
    • /
    • pp.277-286
    • /
    • 2020
  • Polycystic kidney disease 2-like-1 (PKD2L1), also known as polycystin-L or TRPP3, is a non-selective cation channel that regulates intracellular calcium concentration. Calmodulin (CaM) is a calcium binding protein, consisting of N-lobe and C-lobe with two calcium binding EF-hands in each lobe. In previous study, we confirmed that CaM is associated with desensitization of PKD2L1 and that CaM N-lobe and PKD2L1 EF-hand specifically are involved. However, the CaM-binding domain (CaMBD) and its inhibitory mechanism of PKD2L1 have not been identified. In order to identify CaM-binding anchor residue of PKD2L1, single mutants of putative CaMBD and EF-hand deletion mutants were generated. The current changes of the mutants were recorded with whole-cell patch clamp. The calmidazolium (CMZ), a calmodulin inhibitor, was used under different concentrations of intracellular. Among the mutants that showed similar or higher basal currents with that of the PKD2L1 wild type, L593A showed little change in current induced by CMZ. Co-expression of L593A with CaM attenuated the inhibitory effect of PKD2L1 by CaM. In the previous study it was inferred that CaM C-lobe inhibits channels by binding to PKD2L1 at 16 nM calcium concentration and CaM N-lobe at 100 nM. Based on the results at 16 nM calcium concentration condition, this study suggests that CaM C-lobe binds to Leu-593, which can be a CaM C-lobe anchor residue, to regulate channel activity. Taken together, our results provide a model for the regulation of PKD2L1 channel activity by CaM.

Role of $Ca^{2+}$ and Calmodulin on the Initiation of Sperm Motility in Salmonid Fishes

  • Kho, Kang-Hee;Morisawa, Masaaki;Choi, Kap-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.456-465
    • /
    • 2004
  • $K^+$ efflux through a certain type of $K^+$ channels causes the change of membrane potential and leads to cAMP synthesis in the transmembrane cell signaling for the initiation of sperm motility in the salmonid fishes. The addition of $Ca^{2+}$ conferred motility to the trout sperm that were immobilized by external $K^+$ and other alkaline metals, $Rb^+$ and $Cs^{2+}$, suggesting the participation of external $Ca^{2+}$ in the initiation of sperm motility. L-type $Ca^{2+}$ channel blockers such as nifedipine, nimodipine, and FS-2 inhibited the motility, but N-type $Ca^{2+}$ channel blocker, w-conotoxin MvIIA, did not. On the other hand, the membrane hyperpolarization and cAMP synthesis were suppressed by $Ca^{2+}$ channel blockers, nifedipine, and trifluoroperazine. Furthermore, these suppressions were relieved by the addition of $K^+$ ionophore, valinomycin. Inhibitors of calmodulin, such as W-7, trifluoperazine, and calrnidazol-C1, inhibited the sperm motility, membrane hyperpolarization, and cAMP synthesis. The results suggest that $Ca^{2+}$ influx through $Ca^{2+}$ channels that are sensitive to specific $Ca^{2+}$ channel blockers and calmodulin participate in the changes of membrane potential, leading to synthesis of cAMP in the cell signaling for the initiation of trout sperm motility.

Metabolism of Calcium in the Oocyte Maturation of Rat (흰쥐의 난자성숙에 있어서의 칼슘의 대사)

  • Hong, Soon-Gab;Lee, Joon-Yeong
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제23권3호
    • /
    • pp.357-366
    • /
    • 1996
  • The present experiments aimed to investigate the metabolism of calcium during oocyte maturation in rat. The concentration of free calcium and calmodulin in oocytes was measured respectively by using of fluo-3/AM and FITC with microscope fluorescence spectrometer. The ultrastructural localization of calcium precipitates in oocytes was observed with the transmission electron microscope. Cumulus-free immature oocytes(GV-oocyte) were cultured in vitro through 15 hours. The free calcium concentration in GV oocyte was $55.9{\pm}3.5nM$. In calcium-containing medium, the free calcium concentration was increased in germinal vesicle breakdown(GVBD) oocyte($64.2{\pm}7.3nM$). In normal medium after calcium chelator treatment ($10{\mu}M$ BAPTA/AM), the free calcium contents were slightly lower than those in control group. In calcium-free medium, the free calcium content was drastically increased in GVBD($72.7{\pm}3.4nM$) and metaphase I - anaphase I ($88.0{\pm}3.4nM$) oocyte. In maturation rate of oocytes, GVBD rate was high in control group($82.9{\pm}6.55%$) and calcium chelator treatment group($91.2{\pm}4.4%$), but in calcium-free medium group, it was low and then the oocyte was degenerated without polar body formation. Relative content of calmodulin in oocyte was significantly(P<0.001) increased in metaphase I - anaphase I than in GV and GVBD oocyte. The calcium precipitates were observed in mitochondria and cytoplasm of GV oocyte but that were not observed in mitochondria of GVBD and metaphase I - anaphase I oocyte. And then the calcium precipitates reappeared in mitochondria of metaphase II oocyte. The above results indicate that changes in free calcium and calmodulin concentration of oocyte occur according to the maturational stages and the extracellular calcium is required during oocyte maturation. Also change of calcium localization in oocyte occurs according to the maturational stages.

  • PDF

Involvement of calcium and calmodulin in the acquisition of SA-induced thermotolerance in cucumber seedlings

  • Jung, -You-Jin;Jung, -Sang-Duk;Kim, -Tae-Yun;Hong, -Jung-Hee
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 한국환경과학회 2002년도 봄 학술발표대회 발표논문집
    • /
    • pp.471-474
    • /
    • 2002
  • SA treatment significantly increased thermotolerance In cucumber seedlings. Pretreatment of seeds with $CaCl_2$ solution enhanced the SA- induced thermotolerance. On the contrary, pretreatment with the $Ca^{2+}$ chelator EGTA lowered this SA-induced thermotolerance. In addition, pretreatment with $Ca^{2+}$ channel blocker verapamil also weakened the SA-induced thermotolerance. However, the calmodulin antagonist chlorpromazine(CPZ) had little effect on the SA-induced thermotolerance. Measurement of activity of the antioxidant enzyme APX and the level of lipid peroxidation (in term of MDA) indicated that heat stress induced an oxidative stress in cucumber seedlings. SA treatment induced higher activities of APX and a lower level of lipid peroxidation. $Ca^{2+}$ pretreatment further enhanced the SA-induced increase in APX activity and lowered the heat stress-induced lipid peroxidation, but EGTA pretreatment had a contrary effect. These results suggest that $Ca^{2+}$ and calmodulin may be involved In the acquisition of the SA-induced thermotolerance; antioxidant enzyme system take part in the final generation of the SA-induced thermotolerance.

  • PDF

Cell Cycle-Dependent Activity Change Of $Ca^{2+}/$Calmodulin-Dependent Protein Kinase II In NIH 3T3 Cells

  • Kim, Dae-Sup;Suh, Kyong-Hoon
    • BMB Reports
    • /
    • 제34권3호
    • /
    • pp.212-218
    • /
    • 2001
  • Although the blockage of a cell cycle by specific inhibitors of $Ca^{2+}/$calmodulin-dependent protein kinase II (CaMK-II) is well known, the activity profile of CaMK-II during the cell cycle in the absence of any direct effectors of the enzyme is unclear. The activity of native CaMK-II in NIH 3T3 cells was examined by the use of cell cycle-specific arresting and synchronizing methods. The total catalytic activity of CaMK-II in arrested cells was decreased about 30% in the M phase, whereas the $Ca^{2+}$-independent autonomous activity increased about 1.5-fold in the M phase and decreased about 50% at the G1/S transition. The in vivo phosphorylation level of CaMK-II was lowest at G1/S and highest in M. The CaMK-II protein level was unchanged during the cell cycle. When the cells were synchronized, the autonomous activity was increased only in M. These results indicate that the physiologically relevant portion of CaMK-II is activated only in M, and that the net activation of CaMK-II is required in mitosis.

  • PDF

Glutamate-induced Modulation of $Ca^{2+}$/Calmodulin-dependent Protein Kinase IV in Cultured Rat Cortical Neurons (배양 대뇌피질 신경세포에서 glutamate에 의한 $Ca^{2+}$/calmodulin-dependent protein kinase IV의 활성변화)

  • 조정숙
    • YAKHAK HOEJI
    • /
    • 제45권4호
    • /
    • pp.419-425
    • /
    • 2001
  • The neuronal cell death induced by excess glutamate (Glu) has been implicated in many acute and chronic neurodegenerative diseases including cerebral ischemia. Glu-induced elevation of intra-cellular $Ca^{2+}$ plays a critical role in the excitotoxicity, partly through the activation of a variety of $Ca^{2+}$ dependent enzymes. In the present study, we investigated the Glu-induced modulation of $Ca^{2+}$/calmodulin-dependent protein kinase IV (CaMK IV), a multifunctional enzyme abundantly present in the nuclei of neurons. The exposure of cultured rat cortical neurons to $100{\mu}$M Glu for 3 min dramatically increased CaMK IV activity up to 4.5-fold of the control-treated enzyme activity. The activation was very rapid, reaching peak at 3 min and then declined gradually. Under the same experimental conditions, time-dependent acute and delayed neuronal cell death was observed. Immunoblot analyses using specific antibodies showed that the expressions of CaMK IV and $CaMKK_{\alpha}$ were time-dependently modulated by Glu. Taken together, these results imply that the modulation of CaMK IV activity by Glu may be involved in the cascade of events resulting in neuronal cell death in cortical cultures.

  • PDF

Effect of Glycyrrhizin on the Differentiation of 3T3-L1 Cell (글리시르히진이 3T3-L1세포의 분화에 미치는 영향)

  • Eun, Jae-Soon;Yum, Jeong-Yul;Oh, Suk-Heung;Kweon, Jin;Kang, Sung-Young;Oh, Chan-Ho;So, Joon-No;Jeon, Hoon
    • YAKHAK HOEJI
    • /
    • 제39권5호
    • /
    • pp.535-540
    • /
    • 1995
  • The purpose of this research was to investigate effects of glycyrrhizin on the differentiation of preadipocytes, 3T3-Ll cells and to characterize the action of glycyrrhizin that affect the responses of 3T3-Ll cells during differentiation. The differentiation of 3T3-Ll cells was stimulated by glycyrrhizin, and triglyceride contents was increased in the differentiated 3T3-LI cell extracts. Total protein contents was increased by glycyrrhizin or inductive agents in the differentiated 3T3-Ll cell extracts. Calmodulin contents was increased by inductive agents, but the contents was not affected by glycyrrhizin in the differentiated 3T3-Ll cell extracts. The results suggest that glycyrrhizin has a stimulating activity of adipose conversion, but the activity is not related to calmodulin contents during the process of differentiation of 3T3-LI cells.

  • PDF

Cell Cycle-Dependent Activity Change of Calcium/Calmodulin-Dependent Protein Kinase II (칼슘/calmodulin-의존적 단백질 인산화 효소 II의 동물세포 주기에 따른 활성도 변화에 관한 연구)

  • Koung, Hoon-Suh
    • The Journal of Natural Sciences
    • /
    • 제9권1호
    • /
    • pp.1-7
    • /
    • 1997
  • Calcium/calmodulin-dependent protein kinase II (CaMK-II) is responsible for the phosphorylation of proteins involved in various cellular functions. Since the level of intracellular calcium ($Ca_2+$) oscillate during the cell cycle, it is expected that the activity of CaMK-II is also dependent on the cell cycle. The kinase activity in NIH3T3 cells which were arrested at or released from certain phase of the cell cycle was measured and compared to that in the normally growing asynchronous control cells to investigate whether the activity of this kinase is cell cycle-dependent. Cells were arrested at G0, G1, G1/S, G2/M and M phase, respectively by use of various drugs which do not have any effect on the kinase activity of CaMK-II at G0, G1, G1/s and G2/M phase was similar to that of the control cells, whereas lower at M. Calcium-independent activity of CaMK_II by autophosphorylation was higher at M and, thus, higher autonomy at M, which represented the physiologically relevant activity of CaMK-II. A similar pattern of activity change of the kinase was demonstrated during the cell cycle of synchronized cells which were released from G1 arrest. These results indicate that the activity of CaMK-11 is cell cycle-dependent and is activity during the mitosis.

  • PDF

CaM-5, a soybean calmodulin, is required for disease resistance against both a bacterial and fungal pathogen in tomato, Lycopersicum esculentum (대두 calmoduine유전자 SCaM-5를 발현하는 형질전환 토마토의 병 저항성 검정)

  • Lee, Hyo-Jung;Baek, Dong-Won;Lee, Ok-Sun;Lee, Ji-Young;Kim, Dong-Giun;Chung, Woo-Sik;Yun, Jae-Gil;Lee, Sin-Woo;Kwak, Sang-Soo;Nam, Jae-Seung;Kim, Doh-Hoon;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • 제33권2호
    • /
    • pp.93-97
    • /
    • 2006
  • The calmodulin as a Ca$^{2+}$-binding protein mediates cellular Ca$^{2+}$ signals in response to a wide array of stimuli in higher eukaryotes. Plants produce numerous calmodulin isoforms that exhibit differential gene expression patterns and sense different Ca$^{2+}$ signals. SCaM-5 is a soybean calmodulin that is involved in plant defense signaling. Here, we constructed a SCaM-5 CDNA under control of CaMV 35S promoter and transformed it into tomato (Lycopersicon esculentum). The constitutive over-expression of SCaM-5 in tomato plants exhibited a high levels of pathogenesis-related (PR) gene expression, and conferred an enhanced resistance to two fungal pathogen (Phytophthora capsici, Fusarium oxysporum), and a bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. Thus, this results collectively suggest that SCaM-5 plays an important role in plant defense of tomato.