• 제목/요약/키워드: Caliper Disk Brake

검색결과 15건 처리시간 0.019초

후륜 디스크 브레이크 Moan 노이즈 해석 (Moan Noise Analysis of Rear Disc Brake)

  • 박진국;김찬중;이봉현;정호일;문창룡;김정락;이충렬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.607-612
    • /
    • 2004
  • Disc brake noise continues to be a major concern throughout the automotive industry despite efforts to reduce its occurrence. Eliminating vibrations during braking is an important task for both vehicle passenger comfort and reducing the overall environmental noise levels. There are several classes of disc brake noise, the major ones being squeal, judder, groan, and moan. In this study, analytical model for moan noise of rear disk brake is investigated. Modeling of the disc brake assembly to take account of the effect of different geometrical and contact parameters is studied through the use of multi-body model. The contact stiffness of the caliper and torque member plays an important role in controlling brake vibration. Therefore, a suitable material pair at the caliper/body contact has been made. An ADAMS model of a rear disc brake system was integrated with a flexible suspension trailng arm from MSC/NASTRAN. A fully non-linear dynamic simulatin of brake system behavior, containing rigid and flexible bodies, was performed for a Prescribed set of operating conditions. Simulation results were validated using data from vehicle experimental testing.

  • PDF

설계변수 및 매개변수의 공차를 고려한 캘리퍼 디스크 브레이크의 강건설계 (Robust Optimization of Caliper Brake Disc Considering Tolerance)

  • 김종헌;박정민;이종수
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.905-913
    • /
    • 2003
  • Generally, most of optimization have been performed with fixed sizes and variables. But, the optimum value considering tolerance of design variables and material properties, might be useless owing to exist in infeasible region. It is needed that the tolerance of design variables and material properties is considered for a real design problem. A deterministic optimal solution can be in the feasible region by performing robust optimization considering tolerance. In the paper, robust design is suggested to gain an optimum insensitive to variation of design variables and it is applied for optimization problem of caliper disc brakes for vehicles.

실험계획법을 이용한 전륜 디스크 브레이크 시스템의 로터형상 스퀼소음 저감 최적화 (The Optimum Design of Rotor Shape in Front Disk Brake System for Squeal Noise Reduction using the DOE)

  • 이현영;조용구;아미누딘 빈 아부;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.236-240
    • /
    • 2005
  • This paper deals with friction-induced vibration of disc brake system under constact friction coefficient. A linear, finite element model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability and in order to verify simulations which are based on the FEM model, The comparison of experimental and analytical results shows a good agreement and the analysis indicates that mode coupling due to friction force and geometric instability is responsible fur disc brake squeal. And the Front brake system reduced the squeal noise using design of experiment method(DOE). This helped to validate the FEM model and establish confidence in the simulation results. Also they may be useful during real disk brake model.

  • PDF

Electronic Wedge Brake 시스템의 클램핑력 추정 및 Failsafe 제어 알고리즘 설계에 관한 연구 (A Study on the Clamping Force Estimation and Failsafe Control Algorithm Design of the Electronic Wedge Brake System)

  • 정승환;이형철
    • 한국자동차공학회논문집
    • /
    • 제24권1호
    • /
    • pp.16-23
    • /
    • 2016
  • The EWB(electronic wedge brake) is one in which the braking force is developed in a wedge and caliper system and applied to a disk and wedge mechanism. The advantage of the wedge structure is that it produces self-reinforcing effect and hence, utilizes minimal motor power, resulting in reduced gear and current. The extent of use of clamping force sensors and protection from failure of the EWB system directly depends on the level of vehicle mass production. This study investigated the mathematical equations, simulation modeling, and failsafe control algorithm for the clamping force sensor of the EWB and validated the simulations. As this EWB system modeling can be applied to motor inductance, resistance, screw inertia, stiffness, and wedge mass and angle, this study could improve the accuracy of simulation of the EWB. The simulation results demonstrated the braking force, motor speed, and current of the EWB system when the driver desired to the step and pulse the brake force inputs. Moreover, this paper demonstrated that the proposed failsafe control algorithm accurately detects faults in the clamping force sensor, if any.

브레이크의 스퀼 저감을 위한 로터 형상변경 파라메터 해석 (Parameter Analysis of Rotor Shape Modification for Reduction of Squeal Noise)

  • 이현영;오재응;차병규;조용구;이정윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.820-825
    • /
    • 2004
  • This paper deals with friction-induced vibration of disc brake system under constant friction coefficient. A linear, finite element parameter model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability and in order to verify simulations which are based on the FEM model, the experimental modal test and the dynamometer test are performed. The comparison of experimental and simulation results shows a good agreement and the analysis indicates that mode coupling due to friction force is responsible for disc brake squeal. And squeal type instability is investigated by using the parametric rotor simulation. This indicates parameters which have influence on the propensity of brake squeal. This helped to validate the FEM model and establish confidence in the simulation results. Also they may be useful during real disk brake model.

  • PDF