• Title/Summary/Keyword: Calibration model

Search Result 1,569, Processing Time 0.027 seconds

Experimental Study on the Behavior Characteristics of Single Steel Pile in Sand Subjected to Lateral Loadings (사질토 지반에서 수평하중에 따른 단일강관말뚝의 거동특성에 관한 실험적 연구)

  • Kim, Daehyeon;Lee, Tae-Gwang;Kim, Sun-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3548-3556
    • /
    • 2015
  • In order to fulfill the needs of reliable and economically feasible foundation, engineers should consider not only the working load that can endure extreme conditions but also apprehending precise behavior of continuous dynamic load while designing the foundation of offshore wind power generators. To actualize the foundation, a model pile was made in miniature. Also, calibration chamber was made and a 500mm height of sand-bed was made to perform "static lateral load experiment" and "repetitive loading experiment", total of two Lateral load tests. As a result, in Static Lateral load test, the bigger length/diameter of model pile led an increase in load displacement. However, when performing "Cyclic Lateral load test", the increase in number of under loading led the decrease in horizontal displacement from each repeated lateral load. While performing Static Lateral load test and repeated loading experiment, we could observe the decreasing in the rate of ultimate lateral load capacity increase of the pile. Also, it turned out that the higher relative density of the ground, the lower ultimate lateral load capacity by repeated horizontal loading.

The Sensitivity Analysis of Parameters of Urban Runoff Models due to Variations of Basin Characteristics (II) - Model Calibration and Application - (유역특성 변화에 따른 도시유출모형의 매개변수 민감도분석(II) -모형의 검정 및 적용-)

  • Seo, Gyu-U;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.253-267
    • /
    • 1998
  • In this study, ILLUDAS and SWMM were applied for Dongsucheon basin, Incheon and Test basin, Cheongju. The main parameters (II, IA, IS, SI, SR, SS) which are included in those of each model depending on runoff results were determined, and sensitivity ratios were estimated in order to evaluate and compare the characteristics of each modEL. Total runoff ratio for almost parameters turned out to have a linear relation to the rainfall durations and the scale of basin area but have nothing to do with rainfall distributions. Sensitivity ratios turned out to have a linear relation for the infiltration and soil parameters of ILLUDAS as well as all parameters of SWMM. ronoff sensitivity ratios for almost parameters were smaller than 1.0 because the impacts of total runoff were bigger than those of peak runoff. And runoff sensitivity ratio was equal to 1.0 for the roughness coefficient of SWMM. Total runoff ratio, peak runoff ratio and runoff sensitivity ratio for the selected parameters of those models were presented asthe tables and figures according to the scale of basin area, rainfall durations such as 60, 120, and 180 minutes and Huff's 4th quartiles rainfall distributions. Keywords : ILLUDAS, SWMM, parameter, sensitivity analysis, sensitivity ratio.

  • PDF

Inter-hospital Comparison of Cesarean Section Rates after Risk Adjustment (위험도 보정을 통한 병원간 제왕절개 분만율의 비교)

  • Lee, Sang-Il;Ha, Beom-Man;Lee, Moo-Song;Kang, Wee-Chang;Koo, Hee-Jo;Kim, Chang-Yup;Khang, Young-Ho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.34 no.4
    • /
    • pp.337-346
    • /
    • 2001
  • Objective : To determine the clinical risk factors associated with the mode of delivery decision and to compare cesarean section rates after adjusting for risk factors identified among Korean hospitals. Methods Data were collected from 9 general hospitals in two provincial regions by medical record abstraction during February 2000. A total of 3,467 cases were enrolled and analyzed by stepwise logistic regression. Performance of the risk-adjustment model (discrimination and calibration) was evaluated by the C statistic and the Hosmer-Lemeshow test. Crude rates, predicted rates with 95% confidence intervals, and adjusted rates of cesarean section were calculated and compared among the hospitals. Results : The average crude cesarean section rate was 53.2%, ranging from 39.4% to 65.7%. Several risk factors such as maternal age, previous history of cesarean section, placenta previa, placental abruption, malpresentation, amniotic fluid abnormality, gestational anemia, infant body weight, pregnancy-induced hypertension, and chorioamnionitis were found to have statistically significant effects on the mode of delivery. It was confirmed that information about most of these risk factors was able to be collected through the national health insurance claims database in Korea. Performance of the risk-adjustment model was good (c statistic=0.815, Hosmer-Lemeshow test=0.0621). Risk factor adjustment did lead to some change in the rank of hospital cesarean section rates. The crude rates of three hospitals were beyond 95% confidence intervals of the predicted rates. Conclusions : Considering that cesarean section rates in Korean hospitals are too high, it is apparent that some policy interventions need to be introduced. The concept and methodology of risk adjustment should be used in the process of health policy development to lower the cesarean section rate in Korea.

  • PDF

A Study on the Ground Reinforcement of Jeju Scoria Layer by Chemical Grouting (약액주입에 의한 제주도 송이지층의 지반보강에 관한 연구)

  • Yang, Kiho;Park, Jeongjun;Kim, Younghun;Byun, Yoseph;Lee, Eunjong;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.75-82
    • /
    • 2014
  • Recently, public works becoming bigger in Jeju are implemented various kinds of ground reinforcement method including the chemical grouting method. In this study, we have been investigated on the proper material and the injection condition for the excellent injection effect and the excellent strength of injection material and the permanent waterproof and reinforcement through the experiment. The kind of injection material has been selected through the uniaxial compression test and the endurance test of injection material as the chamber test. An experiment was performed with model ground made of scoria, the injection performance of selected material has been identified through the evaluation test of injection range using the decision test of injection amount and the calibration chamber test. As a result of test, it has been analyzed that MSG appeared to have the excellent strength, durability and injection performance all compared with the ordinary cement, this result is judged to be possible as the ancillary data of design at time of design and construction with the chemical grouting method in the future.

Bundle Block Adjustment of Omni-directional Images by a Mobile Mapping System (모바일매핑시스템으로 취득된 전방위 영상의 광속조정법)

  • Oh, Tae-Wan;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.593-603
    • /
    • 2010
  • Most spatial data acquisition systems employing a set of frame cameras may have suffered from their small fields of view and poor base-distance ratio. These limitations can be significantly reduced by employing an omni-directional camera that is capable of acquiring images in every direction. Bundle Block Adjustment (BBA) is one of the existing georeferencing methods to determine the exterior orientation parameters of two or more images. In this study, by extending the concept of the traditional BBA method, we attempt to develop a mathematical model of BBA for omni-directional images. The proposed mathematical model includes three main parts; observation equations based on the collinearity equations newly derived for omni-directional images, stochastic constraints imposed from GPS/INS data and GCPs. We also report the experimental results from the application of our proposed BBA to the real data obtained mainly in urban areas. With the different combinations of the constraints, we applied four different types of mathematical models. With the type where only GCPs are used as the constraints, the proposed BBA can provide the most accurate results, ${\pm}5cm$ of RMSE in the estimated ground point coordinates. In future, we plan to perform more sophisticated lens calibration for the omni-directional camera to improve the georeferencing accuracy of omni-directional images. These georeferenced omni-directional images can be effectively utilized for city modelling, particularly autonomous texture mapping for realistic street view.

Analysis of Water Quality Variation by Lowering of Water Level in Gangjeong-Goryong Weirin Nakdong River (낙동강 강정고령보 수위저하 운영에 따른 수질 변동특성 분석)

  • Park, Dae-Yeon;Park, Hyung-Seok;Kim, Sung-Jin;Chung, Se-Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.245-262
    • /
    • 2019
  • The objectives of this study were to construct a three-dimensional water quality model (EFDC) for the river reach between Chilgok Weir and Gangjeong-Goryong Weir (GGW) located in Nakdong River, and evaluate the effect of hydraulic changes, such as water level and flow velocity, on the control of water quality and algae biomass. After calibration, the model accurately simulated the temporal changes of the upper and lower water temperatures that collected every 10 minutes, and appropriately reproduced changes in organic matter, nitrogen, phosphorus, and cyanobacteria. However, the simulated values were overestimated for the diatoms and green algae cell density, possibly due to the uncertainties of the parameters associated with algae metabolism and the lack of zooplankton predation function in the simulations. As a result of scenario simulation of running the water level of GGW from EL. 19.44 m to EL. 14.90 m (4.54 m drop), Chl-a and algae cell density decreased significantly.In particular,the cyanobacteria on the surface layer, which causes algal bloom, declined by 56.1% in the low water level scenario compared to the existing management level. The results of this study are in agreement with the previous studies that maintenance of critical flow velocity is effective for controlling cyanobacteria, and imply that hydraulic control such as decrease of water level and residence time in GGW is an alternative to limit the overgrowth of algae.

Study on the Estimation of leaf area index (LAI) of using UAV vegetation index and Tree Height data (UAV 식생지수 및 수고 자료를 이용한 엽면적지수(LAI) 추정 연구)

  • MOON, Ho-Gyeong;CHOI, Tae-Young;KANG, Da-In;CHA, Jae-Gyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.158-174
    • /
    • 2018
  • The leaf area index (LAI) is a major factor explaining the photosynthesis of vegetation, evapotranspiration, and energy exchange between the earth surface and atmosphere, and there have been studies on accurate and applicable LAI estimation methods. This study aimed to investigate the relationship between the actual LAI data, UAV image-based vegetation index, canopy height and satellite image (Sentinel-2) LAI and to present an effective LAI estimation method using UAV. As a result, among the six vegetation indices in this study, NDRE ($R^2=0.496$) and CIRE ($R^2=0.443$), which contained red-edge band, showed a high correlation. The application of the canopy height model data to the vegetation index improved the explanatory power of the LAI. In addition, in the case of NDVI, the saturation problem caused by the linear relationship with LAI was addressed. In this study, it was possible to estimate high resolution LAI using UAV images. It is expected that the applicability of such data will be improved if calibration and correction steps are carried out for various vegetation and seasonal images.

Introduction of Inverse Analysis Model Using Geostatistical Evolution Strategy and Estimation of Hydraulic Conductivity Distribution in Synthetic Aquifer (지구통계학적 진화전략 역산해석 기법의 소개 및 가상 대수층 수리전도도 분포 예측에의 적용)

  • Park, Eungyu
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.703-713
    • /
    • 2020
  • In many geological fields, including hydrogeology, it is of great importance to determine the heterogeneity of the subsurface media. This study briefly introduces the concept and theory of the method that can estimate the hydraulic properties of the media constituting the aquifer, which was recently introduced by Park (2020). After the introduction, the method was applied to the synthetic aquifer to demonstrate the practicality, from which various implications were drawn. The introduced technique uses a global optimization technique called the covariance matrix adaptation evolution strategy (CMA-ES). Conceptually, it is a methodology to characterize the aquifer heterogeneity by assimilating the groundwater level time-series data due to the imposed hydraulic stress. As a result of applying the developed technique to estimate the hydraulic conductivity of a hypothetical aquifer, it was confirmed that a total of 40000 unknown values were estimated in an affordable computational time. In addition, the results of the estimates showed a close numerical and structural similarity to the reference hydraulic conductivity field, confirming that the quality of the estimation by the proposed method is high. In this study, the developed method was applied to a limited case, but it is expected that it can be applied to a wider variety of cases through additional development of the method. The development technique has the potential to be applied not only to the field of hydrogeology, but also to various fields of geology and geophysics. Further development of the method is currently underway.

Object Detection on the Road Environment Using Attention Module-based Lightweight Mask R-CNN (주의 모듈 기반 Mask R-CNN 경량화 모델을 이용한 도로 환경 내 객체 검출 방법)

  • Song, Minsoo;Kim, Wonjun;Jang, Rae-Young;Lee, Ryong;Park, Min-Woo;Lee, Sang-Hwan;Choi, Myung-seok
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.944-953
    • /
    • 2020
  • Object detection plays a crucial role in a self-driving system. With the advances of image recognition based on deep convolutional neural networks, researches on object detection have been actively explored. In this paper, we proposed a lightweight model of the mask R-CNN, which has been most widely used for object detection, to efficiently predict location and shape of various objects on the road environment. Furthermore, feature maps are adaptively re-calibrated to improve the detection performance by applying an attention module to the neural network layer that plays different roles within the mask R-CNN. Various experimental results for real driving scenes demonstrate that the proposed method is able to maintain the high detection performance with significantly reduced network parameters.

Derivation of Dynamic Characteristic Values for Multi-degree-of-freedom Frame Structures based on Frequency Response Function(FRF) (주파수응답함수 기반 다자유도 골조 구조물의 동특성치 도출 및 구조모델링 적용 )

  • So-Yeon Kim;Min-Young Kim;Seung-Jae Lee;Kyoung-Kyu Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.1-10
    • /
    • 2023
  • In the seismic design of structures, seismic forces are calculated based on structural models and analysis. In order to accurately address the dynamic characteristics of the actual structure in the structural model, calibration based on actual measurements is required. In this study, a 4-story frame test specimen was manufactured to simulate frame building, accelerometers were attached at each floor, and 1-axis shaking table test was performed. The natural period of the specimen was similar to that of the actual 4 story frame building, and the columns were designed to behave with double-curvature having the infinite stiffness of the horizontal members. To investigate the effects seismic waves characteristics, historical and artificial excitations with various frequencies and acceleration magnitudes were applied. The natural frequencies, damping ratios, and mode shapes were obtained using frequency response functions obtained from dynamic response signals, and the mode vector deviations according to the input seismic waves were verified using the Mode assurance criterion (MAC). In addition, the damping ratios obtained from the vibration tests were applied to the structural model, and the method with refined dynamic characteristics was validated by comparing the analysis results with the experimental data.