• Title/Summary/Keyword: Calibration error

Search Result 1,024, Processing Time 0.03 seconds

Diurnal Change of Reflectance and Vegetation Index from UAV Image in Clear Day Condition (청천일 무인기 영상의 반사율 및 식생지수 일주기 변화)

  • Lee, Kyung-do;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Ahn, Ho-yong
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.735-747
    • /
    • 2020
  • Recent advanced UAV (Unmanned Aerial Vehicle) technology supply new opportunities for estimating crop condition using high resolution imagery. We analyzed the diurnal change of reflectance and NDVI (Normalized Difference Vegetation Index) in UAV imagery for crop monitoring in clear day condition. Multi-spectral images were obtained from a 5-band multi-spectral camera mounted on rotary wing UAV. Reflectance were derived by the direct method using down-welling irradiance measurement. Reflectance using UAV imagery on calibration tarp, concrete and crop experimental sites did not show stable by time and daily reproducible values. But the CV (Coefficient of Variation) of diurnal NDVI on crop experimental sites was less than 5%. As a result of comparing NDVI at the similar time for two day, the daily mean average ratio of error showed a difference of 0.62 to 3.97%. Therefore, it is considered that NDVI using UAV imagery can be used for time series crop monitoring.

Real-time Upstream Inflow Forecasting for Flood Management of Estuary Dam (담수호 홍수관리를 위한 상류 유입량 실시간 예측)

  • Kang, Min-Goo;Park, Seung-Woo;Kang, Moon-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1061-1072
    • /
    • 2005
  • A hydrological grey model is developed to forecast short-term river runoff from the Naju watershed located at upstream of the Youngsan estuary dam in Korea. The runoff of the Naju watershed is measured in real time at the Naju streamflow gauge station, which is a key station for forecasting the upstream inflow and operating the gates of the estuary dam in flood period. The model's governing equation is formulated on the basis of the grey system theory. The model parameters are reparameterized in combination with the grey system parameters and estimated with the annealing-simplex method In conjunction with an objective function, HMLE. To forecast accurately runoff, the fifth order differential equation was adopted as the governing equation of the model in consideration of the statistic values between the observed and forecast runoff. In calibration, RMSE values between the observed and simulated runoff of two and six Hours ahead using the model range from 3.1 to 290.5 $m^{3}/s,\;R^2$ values range from 0.909 to 0.999. In verification, RMSE values range from 26.4 to 147.4 $m^{3}/s,\;R^2$ values range from 0.940 to 0.998, compared to the observed data. In forecasting runoff in real time, the relative error values with lead-time and river stage range from -23.4 to $14.3\%$ and increase as the lead time increases. The results in this study demonstrate that the proposed model can reasonably and efficiently forecast runoff for one to six Hours ahead.

Application of Remote Sensing Technique to Enhance the Water Quality Model Validation in a Large Water Body (원격탐사를 이용한 대형 수체의 수질 모델 검증 효과 제고 방안에 관한 연구)

  • Lim, Hyun-Ju;Choi, Jung-Hyun;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.447-452
    • /
    • 2006
  • The remote sensing technique was applied to enhance the water qualify model validation in a large water body. Since the satellite image usually covers the wide surface area of a large water body, it can compensate for the lark of measured data points required for model calibration and verification. This paper describes the analysis of Landsat FTM+images collected on April 29th and September 4th in year 2000 to evaluate surface water temperature of Lake Paldang. The water temperature data obtained from the satellite image were compared with model results by estimating three different methods of error criteria. The residual ratios on April 29th and September 4th were 0.13 and 0.04 respectively. This showed that the model result accords with the data obtained from the process of satellite image. Without considering atmospheric interference, however, transformation process of satellite image causes relatively large residual ratio in the surface water temperature distribution pattern on April 29th. In the future study, therefore, the atmospheric properties of image acquisition point needs to be considered for the application of radiance transformation model.

Some considerations for the determination of carbonyl compounds in air: Reaction characteristics of formaldehyde with 2.4-DNPH (대기 중 카보닐 계열 성분의 분석기법의 연구: 포름알데하이드와 DNPH의 반응 특성을 중심으로)

  • Hong, Y.J.;Kim, K.H.
    • Analytical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.43-50
    • /
    • 2005
  • A number of carbonyl compounds including formaldehyde and acetaldehyde are well known for their toxicity and irritancy. Hence, acquisition of both qualitative and quantitative tool for their analysis is essential to resolve issues associated with malodor or indoor pollution. Using HPLC/UV method, we examined various aspects involved in the measurements of formaldehyde in environmental samples. The results of our analysis indicated that its detection was made as low as 0.5 ppb (assuming 5 L of sample volume), while its precision was maintained near 2% in terms of relative standard error (RSE). When the stability of calibration was checked by variability of slope values obtained over long-term period (e.g., one month), its values were found to remain constantly with RSE values of 3%. It was also found that liquid-phase reaction between formaldehyde and DNPH proceed very slowly to attain equilibrium (one and half hour), while requiring adequate amount of DNPH to form their derivatives. The overall results of our study thus suggest that there are a number of factors to consider for the accurate analysis of formaldehyde in ambient air.

The useage of the EPID as a QA tools (EPID의 적정관리 도구로서의 유용성에 관한 연구)

  • Cho Jung Hee;Bang Dong Wan;Yoon Seong Ik;Park Jae Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 1999
  • Purpose : The aim of this study is to conform the possibility of the liquid type EPID as a QC tools to clinical indication and of replacement of the film dosimetry. Aditional aim is to describe a procedure for the use of a EPID as a physics calibration tool in the measurements of radiation beam parameters which are typically carried out with film. Method & Materials : In this study we used the Clinac 2100c/d with EPID. This system contains 65536 liquid-filled ion chambers arranged in a $256{\times}256$ matrix and the imaging area is $32.5{\times}32.5cm$ with liquid layer thickness of 1mm. The EPID was tested for different field sizes under typical clinical conditions and pixel values were calibrated against dose by producing images using various thickness of lead attenuators(lead step wedge) using 6 & 10MV x-ray. We placed various thickness of lead on the table of linear accelerator and set the portal vision an SDD of 100cm. To acquire portal image we change the field size and energy, and we recorded the average pixel value in a $3{\times}3$ pixel region of interest(ROI) at field center was recorded. The pixel values were also measured for different field sizes in order to evaluate the dependence of pixel value on x-ray energy spectrum and various scatter components. Result : The EPID, as a whole, was useful as a QA tool and dosimetry device. In mechanical check, cross-hair centering was well matched and the error was less than ?2mm and light/radiation field coincidence was less than 1mm also. In portal dosimetry the wider the field size the the higher the pixel value and as the lead thickness increase, the pixel value was exponentially decreased. Conclusions : The EPID was very suitable for QA tools and it can be used to measure exit dose during patients treatment with reasonable accuracy. But when indicate the EPID to clincal study deep consideration required

  • PDF

ATTITUDE AND EXPOSURE CORRECTIONS OF FIMS DATA (원자외선분광기 FIMS 자료의 자세정보 및 노출시간 보정)

  • Seon, K.I.;Yuk, I.S.;Ryu, K.S.;Lee, D.H.;Park, J.H.;Jin, H.;Shinn, J.H.;Nam, U.W.;Han, W.;Min, K.;Korpela Eric;Nishikida Kaori;Edelstein Jerry
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.399-416
    • /
    • 2004
  • The FIMS (Far-ultraviolet IMaging Spectrograph), the main payload onboard the first Korean science satellite STSAT-1, has performed various observations since its launch on September 2003. It has been found that the attitude informations provided by spacecraft bus system have a time offset problem, and the problem has been extensively studied. After the time offset correction, boresight offsets between FIMS fields of view, of long and short wavelength bands, respectivley, and spacecraft attitude systems, which are mainly due to alignment error between the FIMS and spacecraft mechanical systems, were calculated through the observations of well known calibration targets. Monthly status and precision of the attitude information are also described. Correction methods for spatially variable exposure, intrinsic to FIMS data, are discussed. These results are essential to the FIMS data analysis, and will be used as references for subsequent studies on more accurate attitude corrections.

Direct Determination of Molybdenum in Simulated Nuclear Spent Fuels by Inductively Coupled Plasma Atomic Emission Spectrometry (유도결합플라스마 원자방출분광법을 이용한 모의 사용후핵연료 중 몰리브덴 분석)

  • Choi, Kwang Soon;Lee, Chang Heon;Park, Soon Dal;Park, Yang Soon;Joe, Kih Soo
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.291-296
    • /
    • 2000
  • The SIMFUEL which composition is similar to PWR nuclear spent fuels was dissolved with a acid digestion bomb. An analytical conditions of ICP-AES for the direct determination of molybdenum in the uranium matrices without separation process were investigated. Based on the effect of uranium on molybdenum intensity. the most optimum wavelengths of molybdenum were found to be 202.030 and 203.844 nm. However, the method of standard additions is applied to overcome the effects of changing background caused by analyzing the sample solutions containing high concentration of uranium and the standard calibration solutions. The relative error of two methods, direct and indirect measurements with cation exchange resin separation procedures, was less than 5%. Therefore it was possible for this procedure to directly measure molybdenum in uranium matrices without separation. And this method was also applied to the determination of several percent of molybdenum in a U-Mo alloy.

  • PDF

Measurement of Moment of Inertia of a Small Turbocharger Rotor (소형 터보과급기 로터의 관성모멘트 측정)

  • Chung, Jin-Eun;Jeon, Se-Hun;Lee, Sang-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.711-717
    • /
    • 2017
  • Measurements of the moment of inertia of a small turbocharger rotor were studied. A measuring device was manufactured using the trifilar method and the moment of inertia of the calibration rotor was measured to verify the device. The coefficient of variation was 0.43% and the error was 0.75%. The results showed that the device is suitable for measuring the moment of inertia of a turbocharger rotor. Next, the moment of inertia for two turbine rotors and compressor wheels was measured. Those for the turbine rotors showed precise and accurate results in that the coefficients were under 1.0% and the errors were under 3.0%. On the other hand, those for the compressor wheel were precise but inaccurate in that the coefficients were under 1.0% and the errors were over 24.4%. Therefore an indirect method for the compressor wheel was suggested. The results showed that the coefficients were under 1.2% and the errors were under 7.88%.

Development and validation of an LC-MS/MS method for determination of compound K in human plasma and clinical application

  • Kim, Jung Soo;Kim, Yunjeong;Han, Song-Hee;Jeon, Ji-Young;Hwang, Minho;Im, Yong-Jin;Kim, Jung Hyun;Lee, Sun Young;Chae, Soo-Wan;Kim, Min-Gul
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.135-141
    • /
    • 2013
  • A rapid, sensitive and selective analytical method was developed and validated for the determination of compound K, a major intestinal bacterial metabolite of ginsenosides in human plasma. Liquid-liquid extraction was used for sample preparation and analysis, followed by liquid chromatography tandem spectrometric analysis and an electrospray-ionization interface. Compound K was analyzed on a Phenomenex Luna C18 column ($100{\times}2.00$ mm, 3 ${\mu}m$) with the mobile phase run isocratically with 10 mM ammonium acetate-methanol-acetonitrile (5:47.5:47.5, v/v/v) at a flow rate of 0.5 mL/min. The method was validated for accuracy (relative error <12.63%), precision (coefficient of variation <9.14%), linearity, and recovery. The assay was linear over the entire range of calibration standards i.e., a concentration range of 1 ng/mL to 1,000 ng/mL ($r^2$ >0.9968). The recoveries of compound K after liquid-liquid extraction at 1, 2, 400, and 800 ng/mL were $106.00{\pm}0.08%$, $103.50{\pm}0.19%$, $111.45{\pm}5.21%$, and $89.62{\pm}34.46%$ for intra-day and $85.40{\pm}0.08%$, $94.50{\pm}0.09%$, $112.50{\pm}5.21%$, and $95.87{\pm}34.46%$ for inter-day, respectively. The lower limit of quantification of the analytical method of compound K was 1 ng/mL in human plasma. The developed method was successfully applied to a pharmacokinetic study of compound K after oral administration in ten of healthy human subjects.

Feasibility Study for Development of Transit Dosimetry Based Patient Dose Verification System Using the Glass Dosimeter (유리선량계를 이용한 투과선량 기반 환자선량 평가 시스템 개발을 위한 가능성 연구)

  • Jeong, Seonghoon;Yoon, Myonggeun;Kim, Dong Wook;Chung, Weon Kuu;Chung, Mijoo;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.241-249
    • /
    • 2015
  • As radiation therapy is one of three major cancer treatment methods, many cancer patients get radiation therapy. To exposure as much radiation to cancer while normal tissues near tumor get little radiation, medical physicists make a radiotherapy plan treatment and perform quality assurance before patient treatment. Despite these efforts, unintended medical accidents can occur by some errors. In order to solve the problem, patient internal dose reconstruction methods by measuring transit dose are suggested. As feasibility study for development of patient dose verification system, inverse square law, percentage depth dose and scatter factor are used to calculate dose in the water-equivalent homogeneous phantom. As a calibration results of ionization chamber and glass dosimeter to transit radiation, signals of glass dosimeter are 0.824 times at 6 MV and 0.736 times at 10 MV compared to dose measured by ionization chamber. Average scatter factor is 1.4 and Mayneord F factor was used to apply percentage depth dose data. When we verified the algorithm using the water-equivalent homogeneous phantom, maximum error was 1.65%.