• Title/Summary/Keyword: Calibration and Validation of Satellite data

Search Result 38, Processing Time 0.024 seconds

REQUIREMENT AND INITIALIZATION OF KOMPSAT-5 CALIBRATION AND VALIDATION

  • Lee, Dong-Han;Seo, Doo-Chun;Song, Jeong-Heon;Park, Soo-Young;Lim, Hyo-Suk
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.776-779
    • /
    • 2006
  • KOMPSAT-5 that will be launched at the end of 2008 has a SAR (Synthetic Aperture Radar) payload. Since the Calibration and Validation of a satellite SAR is different from a passive optical camera as KOMPSAT-2 MSC and KOMPSAT-3 payload, we have started from the basis of SAR system. Firstly, the general SAR Cal/Val parameters have been gathered and defined. Secondly, we have been choosing the Cal/Val parameters suitable to KOMPSAT-5. Thirdly, the methods of SAR Cal/Val with the parameters have been studied. Fourthly, the requirement of Cal/Val devices and Cal/Val site has been studied.

  • PDF

ACTIVITIES OF CALIBRATION AND VALIDATION FOR THE KOMPSAT-2 MSC DATA

  • Lee Dong-Han;Lee Sun-Gu;Seo Doo-Chun;Song Jeong-Heon;Shih Jae-Min;Kim Yongseung;Lim Hyo-Suk;Paik Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.620-623
    • /
    • 2005
  • KARI has prepared Calibration and Validation activities for the KOMPSAT-2 (KOrea Multi-Purpose SATellite-2) MSC data that will be launched at the end of this year. Firstly, we divided the Cal/Val activities of it to four parts, Spatial, Spectral, Radiometric and Geometric, and defmed the detailed Cal/Val items from them. Secondly, Cal/Val targets have been defined and manufactured for the role of them. Thirdly, we have made the plan and the procedure for the Cal/Val items, developed the codes for them, studied more detailed method to do them, and trained the Cal/Val activities using the foreign satellite image data by ourselves. KARI has been now setting up the KOMPSAT-2 LEOP plan with the Cal/Val activities, and probably will finish the EOP Cal/Val activities for the KOMPSAT-2 MSC data by the next April or May.

  • PDF

Standardization of High-resolution Satellite Image data (고해상도 위성 영상자료 표준화 동향)

  • Lee, Dong-Han;Seo, Doo-Chun;Lim, Hyo-Suk
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.2
    • /
    • pp.31-39
    • /
    • 2008
  • In this paper, the definition and the requirement from Users of standardization of high resolution satellite image data will be presented. If Users do not use the satellite image data, the satellite will be useless thing though it has been developed and operated now. The standardization of the satellite image data will make Users use the image data with no problem, so KARI has to do the standardization of it as a space agency that has developed and operated the satellite. For the standardization of it, the technical requirement to develop the satellite, the international standardization for the satellite image data and the requirement from Users will be reflected into the satellite development, and then the format and content of the satellite image data to Users have to be accommodated with the standard format of it. In addition to it, the calibration and validation just make sure of the quality of the satellite image data. For this, KARI has just been doing the standardization of KOMPSAT series in stages.

  • PDF

Prelaunch Study of Validation for the Geostationary Ocean Color Imager (GOCI) (정지궤도 해색탑재체(GOCI) 자료 검정을 위한 사전연구)

  • Ryu, Joo-Hyung;Moon, Jeong-Eon;Son, Young-Baek;Cho, Seong-Ick;Min, Jee-Eun;Yang, Chan-Su;Ahn, Yu-Hwan;Shim, Jae-Seol
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.251-262
    • /
    • 2010
  • In order to provide quantitative control of the standard products of Geostationary Ocean Color Imager (GOCI), on-board radiometric correction, atmospheric correction, and bio-optical algorithm are obtained continuously by comprehensive and consistent calibration and validation procedures. The calibration/validation for radiometric, atmospheric, and bio-optical data of GOCI uses temperature, salinity, ocean optics, fluorescence, and turbidity data sets from buoy and platform systems, and periodic oceanic environmental data. For calibration and validation of GOCI, we compared radiometric data between in-situ measurement and HyperSAS data installed in the Ieodo ocean research station, and between HyperSAS and SeaWiFS radiance. HyperSAS data were slightly different in in-situ radiance and irradiance, but they did not have spectral shift in absorption bands. Although all radiance bands measured between HyperSAS and SeaWiFS had an average 25% error, the 11% absolute error was relatively lower when atmospheric correction bands were omitted. This error is related to the SeaWiFS standard atmospheric correction process. We have to consider and improve this error rate for calibration and validation of GOCI. A reference target site around Dokdo Island was used for studying calibration and validation of GOCI. In-situ ocean- and bio-optical data were collected during August and October, 2009. Reflectance spectra around Dokdo Island showed optical characteristic of Case-1 Water. Absorption spectra of chlorophyll, suspended matter, and dissolved organic matter also showed their spectral characteristics. MODIS Aqua-derived chlorophyll-a concentration was well correlated with in-situ fluorometer value, which installed in Dokdo buoy. As we strive to solv the problems of radiometric, atmospheric, and bio-optical correction, it is important to be able to progress and improve the future quality of calibration and validation of GOCI.

STANDARIZING THE EXTRATERRESTRIAL SOLAR IRRADIANCE SPECTRUM FOR CAL/VAL OF GEOSTATIONARY OCEAN COLOR IMAGER (GOCI)

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.86-89
    • /
    • 2006
  • Ocean color remote sensing community currently uses the different solar irradiance spectra covering the visible and near-infrared in the calibration/validation and deriving products of ocean color instruments. These spectra derived from single and / or multiple measurements sets or models have significant discrepancies, primarily due to variation of the solar activity and uncertainties in the measurements from various instruments and their different calibration standards. Thus, it is prudent to examine model-to-model differences and select a standard reference spectrum that can be adopted in the future calibration and validation processes, particularly of the first Geostationary Ocean Color Imager (GOCI) onboard its Communication Ocean and Meterological Satellite (COMS) planned to be launched in 2008. From an exhaustive survey that reveals a variety of solar spectra in the literature, only eight spectra are considered here seeing as reference in many remote sensing applications. Several criteria are designed to define the reference spectrum: i.e., minimum spectral range of 350-1200nm, based completely or mostly on direct measurements, possible update of data and less errors. A careful analysis of these spectra reveals that the Thuillier 2004 spectrum seems to be very identical compared to other spectra, primarily because it represents very high spectral resolution and the current state of the art in solar irradiance spectra of exceptionally low uncertainty ${\sim}0.1%.$ This study also suggests use of the Gueymard 2004 spectrum as an alternative for applications of multispectral/multipurpose satellite sensors covering the terrestrial regions of interest, where it provides spectral converge beyond 2400nm of the Thuillier 2004 spectrum. Since the solar-activity induced spectral variation is about less than 0.1% and a large portion of this variability occurs particularly in the ultraviolet portion of the electromagnetic spectrum that is the region of less interest for the ocean color community, we disregard considering this variability in the analysis of solar irradiance spectra, although determine the solar constant 1366.1 $Wm^{-2}$ to be proposed for an improved approximation of the extraterrestrial solar spectrum in the visible and NIR region.

  • PDF

Research Trend of Calibration Methods on the Satellite Visible and Infrared Sensors (지구관측용 가시광선 및 적외선 위성센서의 검보정 연구 동향)

  • Jin, Kyoung-Wook;Ju, Gwang-Hyeok;Yang, Koon-Ho
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.1
    • /
    • pp.89-96
    • /
    • 2009
  • The calibration methods of satellite visible and infrared sensors for earth observations are ummarized in this paper. Commonly used instruments for the Earth observation and their calibration ethods were briefly introduced. The optical sensors (visible and infrared) and the calibration of these nstruments were focused. With the basic principles of the calibration methods, the instrument-level alibration, which are the essential calibration process for level 1 data generation, were presented.

  • PDF

Design of Calibration and Validation Area for Forestry Vegetation Index from CAS500-4 (농림위성 산림분야 식생지수 검보정 사이트 설계)

  • Lim, Joongbin;Cha, Sungeun;Won, Myoungsoo;Kim, Joon;Park, Juhan;Ryu, Youngryel;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.311-326
    • /
    • 2022
  • The Compact Advanced Satellite 500-4 (CAS500-4) is under development to efficiently manage and monitor forests in Korea and is scheduled to launch in 2025. The National Institute of Forest Science is developing 36 types of forestry applications to utilize the CAS500-4 efficiently. The products derived using the remote sensing method require validation with ground reference data, and the quality monitoring results for the products must be continuously reported. Due to it being the first time developing the national forestry satellite, there is no official calibration and validation site for forestry products in Korea. Accordingly, the author designed a calibration and validation site for the forestry products following international standards. In addition, to install calibration and validation sites nationwide, the authors selected appropriate sensors and evaluated the applicability of the sensors. As a result, the difference between the ground observation data and the Sentinel-2 image was observed to be within ±5%, confirming that the sensor could be used for nationwide expansion.

Calibration and validation of the level 2 data of the Korean OSMI ocean color satellite

  • Suh, Y.S.;Jang, L.H.;Lee, N.K.;Lim, H.S.;Kim, Y.S.;Ahn, Y.H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.703-705
    • /
    • 2003
  • A comparison was made between the chlorophyll a and suspended solid (SS) retrievals from OSMI and SeaWiFS sensor to chlorophyll a and SS values determined with the standard method during the NFRDI's research cruises. The percentage of organic and inorganic materials from the SS was calculated to study the contribution of turbid water in the northern part of the East China Sea. The open sea waters in the Kuroshio regions of the East China Sea showed relatively higher concentration of volatile SS. However, towards the northwestern part of the East China Sea, the situation became much more optically different with the non-volatile SS from the Yangtze river and the sea bottom sources in the sea in winter and spring seasons. Furthermore, in order to indirectly detect low salinity water with high turbidity, which related to the Yangtze river using remote sensed data from the satellites, a comparison between the results of the band ratio(nLw 490nm/nLw 555nm) of SeaWiFS (OSMI) and the distribution of low salinity around the Jeju Island was presented.

  • PDF

Introduction to the Validation Module Design for CMDPS Baseline Products

  • Kim, Shin-Young;Chung, Chu-Yong;Ou, Mi-Lim
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.146-148
    • /
    • 2007
  • CMDPS (COMS Meteorological Data Processing System) is the operational meteorological products extraction system for data observed from COMS (Communication, Ocean and Meteorological Satellite) meteorological imager. CMDPS baseline products consist of 16 parameters including cloud information, water vapor products, surface information, environmental products and atmospheric motion vector. Additionally, CMDPS includes the function of calibration monitoring, and validation mechanism of the baseline products. The main objective of CMDPS validation module development is near-real time monitoring for the accuracy and reliability of the whole CMDPS products. Also, its long time validation statistics are used for upgrade of CMDPS such as algorithm parameter tuning and retrieval algorithm modification. This paper introduces the preliminary design on CMDPS validation module.

  • PDF

In Orbit Radiometric Calibration Tests of COMS MI Infrared Channels

  • Jin, Kyoung-Wook;Seo, Seok-Bae
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.369-377
    • /
    • 2011
  • Since well-calibrated satellite data is critical for their applications, calibration and validation of COMS science data was one of the key activities during the IOT. COMS MI radiometric calibration process was divided into two phases according to the out-gassing of the sensor: calibrations of the visible (VI) and infrared (IR) channels. Different from the VIS calibration, the calibration steps for the IR channels followed additional processes to secure their radiometric performances. Primary calibration steps of the IR were scan mirror emissivity correction, midnight effect compensation, slope averaging and 1/f noise compensation after a nominal calibration. First, the scan mirror emissivity correction was conducted to compensate the variability of the scan mirror emissivity driven by the coating material on the scan mirror. Second, the midnight effect correction was performed to remove unreasonable high spikes of the slope values caused by the excessive radiative sources during the local midnight. After these steps, the residual (difference between the previous slope and the given slope) was filtered by a smoothing routine to eliminate the remnant random noises. The 1/f noise compensation was also carried out to filter out the lower frequency noises caused from the electronics in the Imager. With through calibration processes during the entire IOT period, the calibrated IR data showed excellent performances.