• Title/Summary/Keyword: Calibration Design

Search Result 609, Processing Time 0.029 seconds

DESIGN AND DEVELOPMENT OF THE COMPACT AIRBORNE IMAGING SPECTROMETER SYSTEM

  • Lee, Kwang-Jae;Yong, Sang-Soon;Kim, Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.118-121
    • /
    • 2007
  • In recent years, the hyperspectral instruments with high spatial and high spectral resolution have become an important component of wide variety of earth science applications. The primary mission of the proposed Compact Airborne Imaging Spectrometer System (CAISS) in this study is to acquire and provide full contiguous spectral information with high quality spectral and spatial resolution for advanced applications in the field of remote sensing. The CAISS will also be used as the vicarious calibration equipment for the cross-calibration of satellite image data. The CAISS consists of six physical units: the camera system, the Jig, the GPS/INS, the gyro-stabilized mount, the operating system, and the power inverter and distributor. Additionally, the calibration instruments such as the integrated sphere and spectral lamps are also prepared for the radiometric and spectral calibration of the CAISS. The CAISS will provide high quality calibrated image data that can support evaluation of satellite application products. This paper summarizes the design, development and major characteristic of the CAISS.

  • PDF

Virtual In-situ Sensor Calibration and the Application in Unitary Air Conditioners (유닛형 공기조화기 센서의 가상보정 방법 및 적용 특성 분석)

  • Yoon, Sungmin;Kim, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.6
    • /
    • pp.65-72
    • /
    • 2018
  • Since data-driven building technologies have been widely applied to building energy systems, the accuracy of building sensors has more impacts on the building performance and system performance analysis. Various building sensors, however, can have typical errors including a random error (noise) and a systematic error (bias). The systematic error is indicated by the difference between the mean of measurements and their true value. It may occur due to the sensor's physical condition, measured phenomena, working environments inside the systems. Unfortunately, a conventional calibration method has limitations in calibrating the systematic errors because of the difference between working environments and calibration conditions. In such situations, a novel sensor calibration method is needed to handle various sensor errors, especially for systematic errors, in building energy systems having various thermodynamic environments. This study proposes a building sensor calibration method named Virtual In-situ Calibration (VIC) and shows how it is applied into a real building system and how it solves the sensor errors.

The Study of Circuit Model Parameter Generation Using Device Simulation (소자 시뮬레이션을 이용한 Circuit Model Parameter 생성에 대한 연구)

  • 이흥주
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.177-182
    • /
    • 2003
  • In the case of the flash memory, various kinds of transistors and the wide range of operation voltage are necessary to achieve the read/write operations. Therefore, the characteristics of transistors are measured in the silicon for the circuit design, and the test vehicle run must be processed. In this study, an efficient design flow is suggested using TCAD tools. The test vehicle is replaced with well-calibrated TCAD simulation. First, the calibration methodology is introduced and tested for flash memory device. The calibration errors are less than 5% of a full chip operation, which is accepted by the designers. The results of the calibration were used to predict I-V curves and model parameter of the various transistors for the design of flash device.

  • PDF

Effect of Punch Design and Flow Stress on Frictional Calibration Curve in Boss and Rib Test (보스-리브 시험 시 마찰보정선도에 대한 펀치형상 및 유동응력의 영향)

  • Yun, Y.W.;Kang, S.H.;Lee, Y.S.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.640-645
    • /
    • 2009
  • Recently, boss and rib test based on backward extrusion process was proposed to quantitatively evaluate the interfacial friction condition in bulk forming process. In this test, the tube-shaped punch with hole pressurizes the workpiece so that the boss and rib are formed along the hole and outer surface of the punch. It was experimentally and numerically revealed that the height of boss is higher than that of the rib under the severe friction condition. This work is focused on the effect of the punch design and flow stress on deformation pattern in boss and rib test. From the boss and rib test simulations, it was found that there is slight variation in both the heights of boss and rib according to the length of punch land, nose radius, and face angle. However the hole diameter of the punch and the clearance between the punch and die have a significant influence on the calibration curves showing the heights of the boss and rib. In addition, the effect of flow stress on the calibration curves was investigated through FE simulations. It was found that there is no effect of strength coefficient of the workpiece on the calibration curves for estimation of friction condition. On the other hand, the strain-hardening exponent of the workpiece has a significant influence on the calibration curve.

Calibration Study on the DC Characteristics of GaAs-based $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ Heterostructure Metamorphic HEMTs (GaAs 기반 $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ 이종접합 구조를 갖는 MHEMT 소자의 DC 특성에 대한 calibration 연구)

  • Son, Myung-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.63-73
    • /
    • 2011
  • Metamorphic HEMTs (MHEMTs) have emerged as excellent challenges for the design and fabrication of high-speed HEMTs for millimeter-wave applications. Some of improvements result from improved mobility and larger conduction band discontinuity in the channel, leading to more efficient modulation doping, better confinement, and better device performance compared with conventional pseudomorphic HEMTs (PHEMTs). For the optimized device design and development, we have performed the calibration on the DC characteristics of our fabricated 0.1 ${\mu}m$ ${\Gamma}$-gate MHEMT device having the modulation-doped $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}$As heterostructure on the GaAs wafer using the hydrodynamic transport model of a commercial 2D ISE-DESSIS device simulator. The well-calibrated device simulation shows very good agreement with the DC characteristic of the 0.1 ${\mu}m$ ${\Gamma}$-gate MHEMT device. We expect that our calibration result can help design over-100-GHz MHEMT devices for better device performance.

Application and Construction of PSP Calibration System (PSP 압력 측정 Calibration 시스템 구축 및 적용)

  • Jeon, Young-Jin;Seo, Hyung-Seok;Byun, Yung-Hwan;Lee, Jae-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.99-102
    • /
    • 2007
  • Pressure Sensitive Paint(PSP) means a reacting paint in pressure. The calibration of PSP and the wind tunnel test of PSP painted model are required to measure pressure using by PSP. Therefore, the post processing from these results shows the information and image of the pressure distribution. PSP can show the information of total pressure from the wind tunnel test and the calibration. In this study, equipments of PSP are composed, and calibration is accomplished using by PSP. Results of design and manufacturing calibration chamber till ability of advance calibration system study.

  • PDF

Development and Application of Three-axis Motion Rate Table for Efficient Calibration of Accelerometer and Gyroscope (효율적인 각/가속도 센서 오차 보상을 위한 3 축 각도 측정 장치의 개발 및 활용)

  • Kwak, Hwan-Joo;Hwang, Jung-Moon;Kim, Jung-Han;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.632-637
    • /
    • 2012
  • This paper introduces a simple and efficient calibration method for three-axis accelerometers and three-axis gyroscopes using three-axis motion rate table. Usually, the performance of low cost MEMS-based inertial sensors is affected by scale and bias errors significantly. The calibration of these errors is a bothersome problem, but the previous calibration methods cannot propose simple and efficient method to calibrate the errors of three-axis inertial sensors. This paper introduces a new simple and efficient method for the calibration of accelerometer and gyroscope. By using a three-axis motion rate table, this method can calibrate the accelerometer and gyroscope simultaneously and simply. Experimental results confirm the performance of the proposed method.

A Study on the Design of Digital Controllers with Automatic Calibration (자동 보정형 디지털 제어기 설계에 관한 연구)

  • 나승유;박민상
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.413-416
    • /
    • 1998
  • Sensitivity and calibration considerations are most important in the design and implementation of real control systems. Ideally parameter changes due to various causes should not appreciably affect the system's performances. But all the values of physical components of the plants and controllers as well as the relevant environmental conditions change in time, thus the output performance can be deteriorated during the operating span of the system. Naturally the duty of calibration or the prevention of performance deterioration due to excessive component sensitivity should be provided to the control system. In this paper, we propose a digital controller which has the capability of calibration and gain adjustment as well as the execution of control law. Specifically the problems of gain adjustment and offset calibration in the light source and CdS sensor module for position measurement in a flexible link system are considerably resolved. The parameters of measurement module are prone to change due to environmental brightness conditions resulting in poor steady state performance of the overall control system. Thus a proper method is necessary to provide correction to the changed values of gain and offset in the position measurement module. The proposed controller, whenever necessary, measures the open-loop characteristics, andthen calculates the offset and sensor gain correction values based on the prepared standard measurements. It is applied to the control of a flexible link system with the gain and offset calibration porblems in the light sensor module for position to show the applicability.

  • PDF

Development of a software based calibration system for automobile assembly system oriented AR (자동차 조립시스템 지향 AR을 위한 소프트웨어 기반의 캘리브레이션 시스템 개발)

  • Park, Jin-Woo;Park, Hong-Seok
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • Many automobile manufacturers are doing experiment on manufacturing environments by using an augmented reality technology. However, system layout and process simulation by using the virtual reality technology have been performed actively more than by using the augmented reality technology in practical use so far. Existing automobile assembly by using the augmented reality requires the precise calibrating work after setting the robot because the existing augmented reality system for the automobile assembly system configuration does not include the end tip deflection and the robot joints deflection due to the heavy weight of product and gripper. Because the robot is used mostly at the automobile assembly, the deflection problem of the robot joint and the product in the existing augmented reality system need to be improved. Moreover camera lens calibration has to be performed precisely to use augmented reality. In order to improve this problem, this paper introduces a method of the software based calibration to apply the augmented reality effectively to the automobile assembly system. On the other hand, the camera lens calibration module and the direct compensation module of the virtual object displacement for the augmented reality were designed and implemented. Furthermore, the developed automobile assembly system oriented AR-system was verified by the practical test.

Study on the First On-Orbit Solar Calibration Measurement of Ocean Scanning Multi-spectral Imager (OSMI)

  • Cho, Young-Min
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.9-15
    • /
    • 2001
  • The ocean Scanning Multi-spectral Imager (OSMI) is a payload on the KOrea Multi-Purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring f the study of biological oceanography. OSMI performs solar and dark calibrations for on-orbit instrument calibration. The purpose of the solar calibration is to monitor the degradation of imaging performance for each pixel of 6 spectral bands and to correct the degradation effect on OSMI image during the ground station date processing. The design, the operation concept, and the radiometric characteristics of the solar calibration are investigated. A linear model of image response and a solar calibration radiance model are proposed to study the instrument characteristics using the solar calibration data. The performance of spectral responsivity and spatial response uniformity. The first solar calibration data and the analysis results are important references for further study on the on-orbit stability of OSMI response during its lifetime.