• Title/Summary/Keyword: Calculation algorithms

Search Result 467, Processing Time 0.031 seconds

History of the Photon Beam Dose Calculation Algorithm in Radiation Treatment Planning System

  • Kim, Dong Wook;Park, Kwangwoo;Kim, Hojin;Kim, Jinsung
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.54-62
    • /
    • 2020
  • Dose calculation algorithms play an important role in radiation therapy and are even the basis for optimizing treatment plans, an important feature in the development of complex treatment technologies such as intensity-modulated radiation therapy. We reviewed the past and current status of dose calculation algorithms used in the treatment planning system for radiation therapy. The radiation-calculating dose calculation algorithm can be broadly classified into three main groups based on the mechanisms used: (1) factor-based, (2) model-based, and (3) principle-based. Factor-based algorithms are a type of empirical dose calculation that interpolates or extrapolates the dose in some basic measurements. Model-based algorithms, represented by the pencil beam convolution, analytical anisotropic, and collapse cone convolution algorithms, use a simplified physical process by using a convolution equation that convolutes the primary photon energy fluence with a kernel. Model-based algorithms allowing side scattering when beams are transmitted to the heterogeneous media provide more precise dose calculation results than correction-based algorithms. Principle-based algorithms, represented by Monte Carlo dose calculations, simulate all real physical processes involving beam particles during transportation; therefore, dose calculations are accurate but time consuming. For approximately 70 years, through the development of dose calculation algorithms and computing technology, the accuracy of dose calculation seems close to our clinical needs. Next-generation dose calculation algorithms are expected to include biologically equivalent doses or biologically effective doses, and doctors expect to be able to use them to improve the quality of treatment in the near future.

On a Model of Forming the Optimal Parameters of the Recognition Algorithms

  • Hudayberdiev, Mirzaakbar Kh.;Akhatov, Akmal R.;Hamroev, Alisher Sh.
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.607-609
    • /
    • 2011
  • In this work, we present solutions of two problems. First, the representation of pattern recognition problem in the standard $T_{nml}$ table of the algorithm estimate calculation was considered. Second, the problem of finding the model, consisting of the optimal parameters of an algorithm was considered. Such procedure is carried out by the selection optimal values of the parameters of extreme algorithms. This serves to reduce the number of calculations in the algorithms of estimate calculation and to increase the quality of recognition process. The algorithmic data base of the developed system was based on mathematical apparatus of pattern recognition.

Efficient Computation of Radioactive Decay with Graph Algorithms

  • Yoo, Tae-Sic
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.19-29
    • /
    • 2020
  • This paper gives two graph-based algorithms for radioactive decay computation. The first algorithm identifies the connected components of the graph induced from the given radioactive decay dynamics to reduce the size of the problem. The solutions are derived over the precalculated connected components, respectively and independently. The second algorithm utilizes acyclic structure of radioactive decay dynamics. The algorithm evaluates the reachable vertices of the induced system graph from the initially activated vertices and finds the minimal set of starting vertices populating the entire reachable vertices. Then, the decay calculations are performed over the reachable vertices from the identified minimal starting vertices, respectively, with the partitioned initial value over the reachable vertices. Formal arguments are given to show that the proposed graph inspired divide and conquer calculation methods perform the intended radioactive decay calculation. Empirical efforts comparing the proposed radioactive decay calculation algorithms are presented.

A STUDY ON FUEL ESTIMATION ALGORITHMS FOR A GEOSTATIONARY COMMUNICATION & BROADCASTING SATELLITE

  • Eun, Jeong-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.249-256
    • /
    • 2000
  • It has been developed to calculate fuel budget for a geostationary communication and broadcasting satellite. It is quite essential that the pre-launch fuel budget estimation must account for the deterministic transfer and drift orbit maneuver requirements. After on-station, the calculation of satellite lifetime should be based on the estimation of remaining fuel and assessment of actual performance. These estimations step from the proper algorithms to produce the prediction of satellite lifetime. This paper concentrates on the fuel estimation method that was studied for calculation of the propellant budget by using the given algorithms. Applications of this method are discussed for a communication and broadcasting satellite.

  • PDF

An Analysis of Pre-service Teachers' Pedagogical Content Knowledge about Decimal Calculation (소수연산에 관한 예비초등교사의 교수내용지식 분석)

  • Song, Keun-Young;Pang, Jeong-Suk
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.12 no.1
    • /
    • pp.1-25
    • /
    • 2008
  • The purpose of this study was to identify pre-service teachers' Pedagogical Content Knowledge (PCK) about decimal calculation. A written questionnaire was developed dealing with decimal calculation. A total of 152 pre-service teachers from 3 universities were selected for this study; they had taken an elementary mathematics teaching method course and had no teaching experience. The results were as follows: First, with regard to the method of decimal calculation, most pre-service teachers were familiar with algorithms introduced in the textbook. But with regard to the meaning of decimal calculations, they had difficulties in understanding decimal multiplication or decimal division with decimal number. Second, pre-service teachers recognized reasons of errors as well as errors patterns that student might make. But this recognition was limited mainly to errors related to natural number calculation. Third, pre-service teachers frequently commented about decimals algorithms, picture models, the meanings of decimal calculations, and connections to natural number calculations. Many of them represented the meanings of decimal calculations through picture models as to help students' understanding, while they just mentioned algorithms or treated decimal calculation as natural number calculations with decimal point.

  • PDF

Optimal Design of Water Distribution Networks using the Genetic Algorithms: (I) -Cost optimization- (Genetic Algorithm을 이용한 상수관망의 최적설계: (I) -비용 최적화를 중심으로-)

  • Shin, Hyun-Gon;Park, Hee-Kyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.1
    • /
    • pp.70-80
    • /
    • 1998
  • Many algorithms to find a minimum cost design of water distribution network (WDN) have been developed during the last decades. Most of them have tried to optimize cost only while satisfying other constraining conditions. For this, a certain degree of simplification is required in their calculation process which inevitably limits the real application of the algorithms, especially, to large networks. In this paper, an optimum design method using the Genetic Algorithms (GA) is developed which is designed to increase the applicability, especially for the real world large WDN. The increased to applicability is due to the inherent characteristics of GA consisting of selection, reproduction, crossover and mutation. Just for illustration, the GA method is applied to find an optimal solution of the New York City water supply tunnel. For the calculation, the parameter of population size and generation number is fixed to 100 and the probability of crossover is 0.7, the probability of mutation is 0.01. The yielded optimal design is found to be superior to the least cost design obtained from the Linear Program method by $4.276 million.

  • PDF

Algorithms on layout design for overhead facility (천장형 설비의 배치 설계를 위한 해법의 개발)

  • Yang, Byoung-Hak
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.1
    • /
    • pp.133-142
    • /
    • 2011
  • Overhead facility design problem(OFDP) is one of the shortest rectilinear flow network problem(SRFNP)[4]. Genetic algorithm(GA), artificial immune system(AIS), population management genetic algorithm (PM) and greedy randomized adaptive search procedures (GRASP) were introduced to solve OFDP. A path matrix formed individual was designed to represent rectilinear path between each facility. An exchange crossover operator and an exchange mutation operator were introduced for OFDP. Computer programs for each algorithm were constructed to evaluate the performance of algorithms. Computation experiments were performed on the quality of solution and calculations time by using randomly generated test problems. The average object value of PM was the best of among four algorithms. The quality of solutions of AIS for the big sized problem were better than those of GA and GRASP. The solution quality of GRASP was the worst among four algorithms. Experimental results showed that the calculations time of GRASP was faster than any other algorithm. GA and PM had shown similar performance on calculation time and the calculation time of AIS was the worst.

An Accelerated Approach to Dose Distribution Calculation in Inverse Treatment Planning for Brachytherapy (근접 치료에서 역방향 치료 계획의 선량분포 계산 가속화 방법)

  • Byungdu Jo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.633-640
    • /
    • 2023
  • With the recent development of static and dynamic modulated brachytherapy methods in brachytherapy, which use radiation shielding to modulate the dose distribution to deliver the dose, the amount of parameters and data required for dose calculation in inverse treatment planning and treatment plan optimization algorithms suitable for new directional beam intensity modulated brachytherapy is increasing. Although intensity-modulated brachytherapy enables accurate dose delivery of radiation, the increased amount of parameters and data increases the elapsed time required for dose calculation. In this study, a GPU-based CUDA-accelerated dose calculation algorithm was constructed to reduce the increase in dose calculation elapsed time. The acceleration of the calculation process was achieved by parallelizing the calculation of the system matrix of the volume of interest and the dose calculation. The developed algorithms were all performed in the same computing environment with an Intel (3.7 GHz, 6-core) CPU and a single NVIDIA GTX 1080ti graphics card, and the dose calculation time was evaluated by measuring only the dose calculation time, excluding the additional time required for loading data from disk and preprocessing operations. The results showed that the accelerated algorithm reduced the dose calculation time by about 30 times compared to the CPU-only calculation. The accelerated dose calculation algorithm can be expected to speed up treatment planning when new treatment plans need to be created to account for daily variations in applicator movement, such as in adaptive radiotherapy, or when dose calculation needs to account for changing parameters, such as in dynamically modulated brachytherapy.

Enhanced Algorithms for Reliability Calculation of Complex System

  • Lee, Seong Cheol
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.121-135
    • /
    • 1999
  • This paper studies the problem of inverting minimal path sets to obtain minimal cut sets for complex system. We describe efficiency of inversion algorithm by the use of boolean algebra and we develop inclusion-exclusion algorithm and pivotal decomposition algorithm for reliability calculation of complex system. Several examples are illustrated and the computation speeds between the two algorithms are undertaken.

  • PDF

A Comparative Study of Different Reliability Calculation Algorithms (신뢰도 계산의 여러 가지 알고리즘의 비교 연구)

  • Ren, Ziyan;Zhang, Dianhai;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1027-1028
    • /
    • 2011
  • In this paper, three reliability calculation algorithms: Monte Carlo Simulation (MCS), Reliability Index Approach (RIA), and Sensitivity-based Monte Carlo Simulation (SMCS) are studied. Their efficiency and accuracy are validated by analytic test functions.

  • PDF