• Title/Summary/Keyword: Calculation

Search Result 16,321, Processing Time 0.042 seconds

Device Development of Mixture Concentration of Ethylene Glycol Antifreeze Coolant for Vehicles (자동차 에틸렌글리콜 부동액의 혼합 농도 측정 장치 개발)

  • Lee, Dae-Woong;Lee, Eun-Woung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.331-336
    • /
    • 2016
  • This study presents a coolant density calculation device and its corresponding method by using a mass flowmeter and the LabVIEW program. The method can be easily measured with a mixture of coolant and by calculating the percentage of ethylene-glycol without additional investment. The cooling water is very important in a vehicle to protect the engine, and the cooling performance is affected by the mixture concentration and coolant density. The coolant density calculation device measures the mixed concentration in the anti-freeze cooling mixture made from distilled water and ethylene-glycol in real time with the mass flowmeter that is commonly attached to the radiator or heater core. The calculation program for the mixture concentration percentage was developed using the LabVIEW software. The correlation between experimental results and the calculation was conducted for a range of temperature from 40 to $90^{\circ}C$ and by varying the mixture ratio of distilled water and ethylene-glycol. As a result, the anti-freeze coolant concentration in the volume percentage is able to monitor the coolant density in a timely basis by implementing a mixture concentration calculation program without the need for additional equipment investment. The results of the calculation for the mixture concentration level show a maximum 2.7% deviation compared to the experimental results.

A Study on the Calculation of Construction Project Cost of Healthcare Facility Business Plan (의료시설 사업계획서의 건축사업비 산정에 관한 연구)

  • Choi, Kwangseok
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.27 no.2
    • /
    • pp.7-14
    • /
    • 2021
  • Purpose: The purpose of this study is to provide an effective construction project cost estimation tool for preparing a business plan of healthcare facilities which can be practically used for development projects. Methods: In order to provide a tool for calculating construction project costs, this study analyzed the Building and Related Laws, the Building Technology Promotion Laws, the Ministry of Land, Infrastructure and Transport notifications and directives, the Ministry of Trade, Industry and Energy notifications, the detailed guidelines of the Ministry of Strategy and Finance, the Building Service Industry Promotion Acts, various certification standards, actual project budget calculation cases, etc. with advices from related experts. Results: 1) Construction cost is classified into construction costs, architectural design costs, supervision costs, incidental costs, and each sub-element. In particular, since there are many incidental cost items, essential items to be reviewed during planning are derived and costs are calculated according to appropriate consideration criteria. 2) Criteria for Payment calculation mainly applies the construction cost rate method or the actual cost fixed amount method in consideration of the characteristics and scope of work. Implications: There are many calculation factors that need to be applied to the construction project cost. Therefore, it is necessary to organize the calculation process more clearly.

Construction of voxel head phantom and application to BNCT dose calculation (Voxel 머리팬텀 제작 및 붕소중성자포획요법 선량계산에의 응용)

  • Lee, Choon-Sik;Lee, Choon-Ik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.2
    • /
    • pp.93-99
    • /
    • 2001
  • Voxel head phantom for overcoming the limitation of mathematical phantom in depleting anatomical details was constructed and example dose calculation for BNCT was performed. The repeated structure algorithm of the general purpose Monte Carlo code, MCNP4B was applied for yokel Monte Carlo calculation. Simple binary yokel phantom and combinatorial geometry phantom composed of two materials were constructed for validating the voxel Monte Carlo calculation system. The tomographic images of VHP man provided by NLM(National Library of Medicine) were segmented and indexed to construct yokel head phantom. Comparison of doses for broad parallel gamma and neutron beams in AP and PA directions showed decrease of brain dose due to the attenuation of neutron in eye balls in case of yokel head phantom. The spherical tumor volume with diameter, 5cm was defined in the center of brain for BNCT dose calculation in which accurate 3 dimensional dose calculation is essential. As a result of BNCT dose calculation for downward neutron beam of 10keV and 40keV, the tumor dose is about doubled when boron concentration ratio between the tumor to the normal tissue is $30{\mu}g/g$ to $3{\mu}g/g$. This study established the voxel Monte Carlo calculation system and suggested the feasibility of precise dose calculation in therapeutic radiology.

  • PDF

Characteristics of the Continuous Measurement and the Fuel Analysis for Emission Calculation of Carbon Dioxide in a Coal Fired Power Plant (석탄화력발전소 이산화탄소 배출량 산정을 위한 연료분석법과 연속측정법의 특성)

  • Choi, Hyun-Ho;Yoo, HoSeon
    • Plant Journal
    • /
    • v.13 no.1
    • /
    • pp.44-50
    • /
    • 2017
  • This study calculates carbon dioxide emissions using the fuel analysis and the continuous measurement from 500 MW-class coal-fired power plants and evaluates the characteristics of each method. The emissions calculation using fuel analysis was the lowest calculation among the emissions calculation methods. This is because of low net calorific value analysis. When using the low calorific coals, it is beneficial to utilize the fuel analysis. Also it showed the characteristics of the lower calculation emissions when used the as fired coals than the as received coals. However, the difference is negligible to less than 2%. As sample analysis personnel and equipment are limited in the present circumstances, it is also deemed appropriate to use the as received coals to fuel analysis. Continuous measurement showed somewhat higher emissions than the fuel analysis, and lower emissions than calculation method using domestic emission factors. Thus, if the calculated emission using fuel analysis increases with the coal type changes, it is beneficial to using modified flow rate measurement method.

  • PDF

Study of Optimal Maintenance Float(M/F) Calculation Method (최적의 정비대체장비(M/F) 산출방안 비교 연구)

  • Lee, Hak-Jae;Jung, Kwang-Kyun;Kim, Jae-Hwang;Lee, Jong-Sin;Lee, Myoung-Jin
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.192-201
    • /
    • 2016
  • Purpose: In this paper, we propose the output model of the optimal inventory requirements of the Maintenance Float (M/F). Weapon systems were modernized and increased costs. Thus, the complexity increases with. Alternatives to achieve the goal of availability of weapon systems and to reduce life-cycle cost are required. Especially, securing spare parts is more effective than adding the amount of equipment or maintenance facilities to achieve the goal of availability and reduce life cycle costs. However, securing spare parts and repair costs are directly related, so exact requirements are needed. Methods: Three kinds of methods (Calculation method of applying the Poisson distribution, Calculation method of considering the number of CSP, and Calculation method of applying M&S program) that this paper proposed compare the influence of the availability and the amount of spare parts. Result: We calculate the cost of M/F when the operational availability is over than 80% and compare that result. The biggest cost was calculated from the Poisson distribution method. We found that requirements and unit price is the key factor that gives a significant effect. Conclusion: These three kinds of methods can be used as a basis for Maintenance Float calculation. Among them, the calculation method based on CSP is optimal replacement equipment requirements calculation method.

A Monitor Unit Verification Calculation in IMRT as a Dosimetry QA

  • Kung, J.H.;Chen, G.T.Y.;Kuchnir, F.T.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.68-73
    • /
    • 2002
  • In standard teletherapy, a treatment plan is generated with the aid of a treatment planning system, but it is common to perform an independent monitor unit verification calculation (MUVC). In exact analogy, we propose and demonstrate that a simple and accurate MUVC in Intensity Modulated Radiotherapy (IMRT) is possible. We introduce a concept of Modified Clarkson Integration (MCI). In MCI, we exploit the rotational symmetry of scattering to simplify the dose calculation. For dose calculation along a central axis (CAX), we first replace the incident IMRT fluence by an azimuthally averaged fluence. Second, the Clarkson Integration is carried over annular sectors instead of over pie sectors. We wrote a computer code, implementing the MCI technique, in order to perform a MUVC for IMRT purposes. We applied the code to IMRT plans generated by CORVUS. The input to the code consists of CORVUS plan data (e.g., DMLC files, jaw settings, MU for each IMRT field, depth to isocenter for each IMRT field), and the output is dose contribution by individual IMRT field to the isocenter. The code uses measured beam data for Sc, Sp, TPR, (D/Mu)$\_$ref/ and includes effects from MLC transmission, and radiation field offset. On a 266 MHZ desktop computer, the code takes less than 15 sec to calculate a dose. The doses calculated with MCI algorithm agreed within +/- 3% with the doses calculated by CORVUS, which uses a 1cm x 1cm pencil beam in dose calculation. In the present version of MCI, skin contour variations and inhomogeneities were neglected.

  • PDF

Predictors of Drug Dosage Calculation Error Risk in Newly Graduated Nurses (신규 졸업 간호사의 약물계산오류의 위험에 영향을 미치는 요인)

  • Kim, Myoung Soo;Kim, Jung Soon;Ha, Won Choon
    • Journal of Korean Biological Nursing Science
    • /
    • v.16 no.2
    • /
    • pp.113-122
    • /
    • 2014
  • Purpose: This study was to identify predictors of drug dosage calculation error risk in newly graduated nurses. Methods: A total of 115 newly graduated nurses who passed their employment examination, but didn't work for hospital yet, were recruited from a university hospital. The data were analyzed by descriptive statistics, $X^2$-test, t-test, ANOVA, Pearson correlation coefficients, and stepwise multiple regression using the SPSS 18.0 program. Results: The mean score of 'drug dosage calculation ability' was $0.81{\pm}0.16$ and the mean score of 'certainty of calculation' was $2.95{\pm}0.60$ out of a 5 point scale. The error risk of drug dosage calculation was positively related to anxiety for drug dosage calculations (r=.388, p<.001), but negatively related to interest and confidence in mathematics (r=-.468, p<.001), confidence related to dosage calculations (r=-.426, p<.001). The main predictors of error risk related drug calculations in newly graduated nurses were identified as interest and confidence in mathematics (${\beta}$=-.468, p<.001). This factor explained about 21.9% of the variance in error risk of drug dosage calculation. Conclusion: The strategies used to decrease the error risk related drug dosage calculation such as improving interest and confidence in mathematics should be developed and implemented.

An Implementation of Knowledge-based BIM System for Representing Design Knowledge on Massing Calculation in Architectural Pre-Design Phase (건축기획 매스 규모산정의 설계지식 재현을 위한 지식기반 BIM 시스템 구현)

  • Lee, Byung-Soo;Ji, Seung-Yeul;Jun, Han-Jong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.3
    • /
    • pp.252-266
    • /
    • 2016
  • An architectural pre-design, which is conducted prior to the architecture design, supports fundamental configuration during the entire AEC project by predicting the cost, demand, etc., of the building, and is therefore gaining importance. In particular, the massing calculation of the pre-design phase should be prioritized, as it is fundamental to architectural outline. However, most architects depend on only their experience and intuition while conceptualizing an integrated framework of design conditions, including the building code and requirements for the massing calculation of the object. Therefore, many difficulties arise in terms of performing appropriate tasks. Thus, the purpose of this study is to implement a knowledge-based BIM for explicitly representing the design knowledge, which is the basis of decision making for an architect while performing the massing calculation. In particular, the 3D knowledge relevant to a project can be provided and accumulated in the massing calculation by the BIM system; this facilitates an integral understanding. Consequently, the approximate result of massing calculation in 3D BIM environment, through both the knowledge-based BIM template and plug-in, can be swiftly provided to the architect. In addition, the architect can invent various alternatives, estimate resulting costs, and reuse the accumulated knowledge in future BIM design processes.

EXAMINATION OF CALCULATION METHOD FOR THE FLEXURAL RIGIDITY OF CROP STALKS

  • Hirai, Yasumaru;Inoue, Eiji;Hashiguchi, Koichi;Kim, Young-Keun;Inaba, Shigeki;Tashiro, Katsumi
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.287-294
    • /
    • 2000
  • Calculation of the flexural rigidity value (EI) is indispensable for prescription of deflection characteristics of crop stalks in harvesting□Conventionally□EI has been determined by either average EI of the whole stalk or average EI of each stems divided into node through the calculation method of cantilever with homogeneous section□However□deflection characteristics of crop stalks caused by mechanical operation such as combine harvester were not exactly presumed by these conventional EI through the experiment by authors. Further, actual EI of a stalk changes in company with a change of moisture contents as time passes during the experiment. Finally, efficient calculation method for determining EI is needed in order to improve these problems. In this study, mechanical model based on actual structure of the crop stalk with variety sectional area was proposed. This mechanical model is calculated by the theory of cantilever with continuous stages. Therefore, improvement of both calculating accuracy on EI and efficiency of measuring system was tried. At first, this calculation method was applied to piano wire of which EI was recognized in advance. As a result, EI calculated from this new method coincided approximately with piano wire's EI. Next, applying to crop stalks as same as piano wire, relationship between loads acting on crop stalks and deflection values calculated by EI using this new calculation method was exactly presumed in comparison with conventional method. Further, measuring time of deflection test was greatly reduced. Finally, new calculation method of EI will be available for estimating mechanical characteristics of so many kinds of crop stalks in harvesting operation. Further, in this study, new deflection test using image-processing apparatus by computer will be introduced.

  • PDF

Improving the Slope Calculation Method for Evaluating the Feasibility of the Land Development (토지 개발 적정성 평가를 위한 경사도 계산 방법 개선)

  • Lee, Byoung Kil
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.85-92
    • /
    • 2016
  • Slope is one of the most important factor in land development permission standards. In guideline of "Land Suitability Assessment" or "Forest Land Conversion Standard", average slope can be measured using digital map and GIS for target area. Inputs in slope calculation are 1/5,000 digital map of NGII(National Geographic Information Institute) or digital information of Korea Land Information System. Many confusions occur in the field, as there is no standard for slope calculation and are lots of slope calculation methods using contour lines or DEM derived from them. Avoiding these confusions, this study was intended to propose a standardized method for slope calculation and a selection method for a suitable resolution. In this study, using DEM of optimum grid size according to the complexity of topography with finite difference method is suggested as improved slope calculation method, after comparing several representative slope calculation methods.