• Title/Summary/Keyword: Calculating Method of Stiffness

Search Result 104, Processing Time 0.029 seconds

Meso-scale model for calculating the stiffness of filament wound composites considering fiber undulations

  • Shen, Chuangshi;Han, Xiaoping
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.273-279
    • /
    • 2017
  • A meso-scale model is proposed to study filament-wound composites with fiber undulations and crossovers. First, the crossover and undulation region is classified as the circumferential undulation and the helical undulation. Next, the two undulations are separately regarded as a series of sub-models to describe the meso-structure of undulations by using meso-parameters such as fiber orientation, fiber inclination angle, resin rich area, fiber volume fraction and bundle cross section. With the meso-structure model and the classic laminate theory, a method for calculating the stiffness of filament wound composites is eventually established. The effects of the fiber inclination angle, the fiber and resin volume fraction and the resin rich area on the stiffness are studied. The numerical results show that the elastic moduli for the circumferential undulation region decrease to a great extent as compared with that of the helical undulation region. Moreover, significant decrease in the elastic and shear moduli and increase in the Poisson's ratio are also found for the resin rich area. In addition, thickness and bundle section have evident effect on the equivalent stiffness of the fiber crossover and the undulation region.

Development of Stiffness Estimation Algorithm for Nonlinear Static Analysis of Bilinear Material Model (이선형 재료모델의 비선형 정적해석을 위한 강성추정 알고리즘 개발)

  • Jung, Sung-Jin;Park, Se-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.620-626
    • /
    • 2016
  • Estimating the nonlinear seismic response of structure in earthquake engineering is important. Nonlinear static analysis is a typical method, and a variety of methods and techniques for estimating the stiffness of structural system at a certain analysis stage have been introduced and used in numerical structural analysis. On the other hand, such methods have many difficulties in practical usage because they use time-consuming iterative methods or simplified algorithms for calculating the structural stiffness at specific points in the time of nonlinear static analysis. For this reason, this study suggests an accurate and effective method for estimating the stiffness of a structure in nonlinear static analysis. For this goal, existing theories of an incremental step-by-step solution was investigated first. Subsequently, an algorithm available for calculating the precise stiffness of a structural system, each element of which has a bilinear material model, was developed based on the investigated methods. Finally, a computer program, sNs, was developed with the algorithm used.

Theoretical formulation for calculating elastic lateral stiffness in a simple steel frame equipped with elliptic brace

  • Jouneghani, Habib Ghasemi;Fanaie, Nader;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.437-454
    • /
    • 2022
  • Elliptic-braced simple resisting frame as a new lateral bracing system installed in the middle bay of frame in building facades has been recently introduced. This system not only creates a problem for opening space from the architectural viewpoint but also improves the structural behavior. Despite the researches on the seismic performance of lateral bracing systems, there are few studies performed on the effect of the stiffness parameters on the elastic story drift and calculation of period in simple braced steel frames. To overcome this shortcoming, in this paper, for the first time, an analytical solution is presented for calculating elastic lateral stiffness in a simple steel frame equipped with elliptic brace subjected to lateral load. In addition, for the first time, in this study, a precise formulation has been developed to evaluate the elastic stiffness variation in a steel frame equipped with a two-dimensional single-story single-span elliptic brace using strain energy and Castigliano's theorem. Thus, all the effective factors, including axial and shear loads as well as bending moments of elliptic brace could be considered. At the end of the analysis, the lateral stiffness can be calculated by an improved and innovative relation through the energy method based on the geometrical properties of the employed sections and specification of the used material. Also, an equivalent element of an elliptic brace was presented for the ease of modeling and use in linear designs. Application of the proposed relation have been verified through a variety of examples in OpenSees software. Based on the results, the error percentage between the elastic stiffness derived from the developed equations and the numerical analyses of finite element models was very low and negligible.

Modified Modal Method for Eigenderivative Analysis of Asymmetric Damped System (비대칭 감쇠 시스템의 고유진동수와 모드의 미분을 구하기 위한 모드법 의 개선)

  • 문영종;박선규;이인원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.125-130
    • /
    • 2001
  • It is well known that many real systems have asymmetric mass, damping and stiffness matrices. In this case, the method for calculating eigenpair sensitivity is different from that of symmetric system. To determine the derivatives of the eigenpairs in asymmetric damped case, a modal method was recently developed by Adhikari. When a dynamic system has many degrees of freedom, only a few lower modes are available, and because the higher modes should be truncated to use the modal method, the errors may become significant. In this paper a procedure for determining the sensitivities of the eigenpairs of asymmetric damped system using a few lowest set of modes is proposed. Numerical examples show that proposed method achieves better calculating efficiency and highly accurate results when a few modes are used.

  • PDF

Modified Modal Method for Eigenderivative Analysis of Asymmetric Damped System (비대칭 감쇠 시스템의 고유진동수와 모드의 미분을 구하기 위한 모드법의 개선)

  • 문영종;박선규;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.509-514
    • /
    • 2001
  • It is well known that many real systems have asymmetric mass, damping and stiffness matrices. In this case, the method for calculating eigenpair sensitivity is different from that of symmetric system. To determine the derivatives of the eigenpairs in asymmetric damped case, a modal method was recently developed by Adhikari. When a dynamic system has many degrees of freedom only a few lower modes are available, and because the higher modes should be truncated to use the modal method, the errors may become significant. In this paper a procedure for determining the sensitivities of the eigenpairs of asymmetric damped system using a few lowest set of modes is proposed. Numerical examples show that proposed method achieves better calculating efficiency and highly accurate results when a few modes are used.

  • PDF

The Contribution of Spindle Parts to Static, Dynamic Stiffness and Design Improvement (공작기계 주축의 요소별 정동적 강성기여율 및 개선에 관한 연구)

  • 이찬홍;박천홍;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.985-988
    • /
    • 2002
  • The Spindle-]fearing System is very important unit for geometrical accuracy in machine tools. To improve effectively the weak point of spindle system, it is necessary that the contribution ratio of spindle core parts to static and dynamic stiffness is clarified. In this paper, static contribution ratio of core parts is calculated by overlapping static deformation of basic spindle design with one flexible parts. The dynamic contribution ratio for natural frequency and dynamic deformation at spindle end is obtained by calculating correlation between original and basic spindle deformation, by curve fitting with regressive method. It is proved the validity of estimation result is correct.

  • PDF

Damage detection in jacket type offshore platforms using modal strain energy

  • Asgarian, B.;Amiri, M.;Ghafooripour, A.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.325-337
    • /
    • 2009
  • Structural damage detection, damage localization and severity estimation of jacket platforms, based on calculating modal strain energy is presented in this paper. In the structure, damage often causes a loss of stiffness in some elements, so modal parameters; mode shapes and natural frequencies, in the damaged structure are different from the undamaged state. Geometrical location of damage is detected by computing modal strain energy change ratio (MSECR) for each structural element, which elements with higher MSECR are suspected to be damaged. For each suspected damaged element, by computing cross-modal strain energy (CMSE), damage severity as the stiffness reduction factor -that represented the ratios between the element stiffness changes to the undamaged element stiffness- is estimated. Numerical studies are demonstrated for a three dimensional, single bay, four stories frame of the existing jacket platform, based on the synthetic data that generated from finite element model. It is observed that this method can be used for damage detection of this kind of structures.

Study on Application of Equivalent Stiffness Modeling Method for Static Aeroelastic Analysis of Large Scale Wind Turbine Rotor System (대형 풍력로터시스템의 정적 공탄성해석을 위한 등가강성모델링 기법 적용에 관한 연구)

  • Cha, Jin-Hyun;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo;Song, Woo-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1236-1244
    • /
    • 2012
  • A equivalent stiffness modeling has been performed for extracting the equivalent stiffness properties which are orthotropic elastic model from a large scale wind turbine rotor blade so that structure model can be constructed more simply for the three dimensional static aeroelastic analysis. In order to present the procedure of equivalent stiffness modeling, NREL 5MW class wind turbine rotor having the three stiffness information which are flapewise, edgewise and torsional stiffness was chosen. This method is based on applying unit moment at the tip of the blade as well as fixing all degree of freedom at the blade root and calculating the displacement from the load analysis to obtain the elastic modulus corresponding to equivalent stiffness referred to the NREL reports on blade divided into 5 sections respectively. In addition, one section was divided into 3 parts and the trend functions were used to make the equivalent stiffness model more correctly and quickly. Through the comparison of stiffness between the reference values and calculated values from equivalent stiffness model, the investigation of the accuracy on the stiffness values and the efficiency for constructing the model was conducted.

Modified Modal Methods for Sensitivity Analysis of Asymmetric Damped System (비대칭 감쇠 시스템의 민감도 해석을 위한 개선된 모드법)

  • Moon, Yeong-Jong;Jo, Ji-Seong;Oh, Ju-Won;Lee, In-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.530-533
    • /
    • 2004
  • It is well known that many real systems have asymmetric mass, damping and stiffness matrices. In this case, the method for calculating eigenpair sensitivity is different from that of symmetric system. To determine the derivatives of the eigenpairs in asymmetric damped case, a modal method was recently developed by Adhikari. When a dynamic system has many degrees of freedom, only a few lower modes are available, and because the higher modes should be truncated to use the modal method, the errors may become significant. In this paper a procedure for determining the sensitivities of the eigenpairs of asymmetric damped system using a few lowest set of modes is proposed. Numerical examples show that proposed method achieves better calculating efficiency and highly accurate results when a few modes are used.

  • PDF

Dynamic Analysis of Spindle Supported by Multiple Bearings of Different Types (복합베어링으로 지지된 스핀들의 동적 해석)

  • Tong, Van-Canh;Bae, Gyu-Hyun;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.117-125
    • /
    • 2015
  • This paper presents a dynamic modeling method for the indeterminate spindle-bearing system supported by multiple bearings of different types. A spindle-bearing system supported by ball and cylindrical roller bearings is considered. The de Mul's bearing model is extended for calculating ball and cylindrical roller bearing stiffness matrices with inclusion of centrifugal force and gyroscopic moment. The dependence between spindle shaft reaction forces and bearing stiffness is effectively resolved using an iterative approach. The spindle rotor dynamics is established with the Timoshenko beam theory based finite elements. The spindle reaction forces, bearings stiffness and spindle natural frequencies are obtained with taking into account spindle radial load, ball bearing axial preload and rotational speed effects. The developed method is verified by comparing the simulation results with those from a commercial program.