
한국정밀공학회지 제 32권 2호 pp. 117-125  

J. Korean Soc. Precis. Eng., Vol. 32, No. 2, pp. 117-125 

ISSN 1225-9071(Print), ISSN 2287-8769(Online) 

 

February 2015  /  117

http://dx.doi.org/10.7736/KSPE.2015.32.2.117

 

◆ 특집 ◆ 회전 유니트 모델링 기술

 

복합베어링으로 지지된 스핀들의 동적 해석 

 

Dynamic Analysis of Spindle Supported by Multiple Bearings of Different Types 
 

 

통반칸
1
, 배규현

1
, 홍성욱

2,�

Van-Canh Tong
1
, Gyu-Hyun Bae

1
, and Seong-Wook Hong

2,�

1 금오공과대학교 기전공학과 대학원 (Graduate School, Department of Mechatronics, Kumoh National Institute of Technology)

2 금오공과대학교 기전공학과 (Department of Mechatronics, Kumoh National Institute of Technology)

� Corresponding author: swhong@kumoh.ac.kr, Tel: +82-54-478-7344

Manuscript received: 2014.12.9 / Revised: 2015.1.10 / Accepted: 2015.1.14

 

This paper presents a dynamic modeling method for the indeterminate spindle-bearing system 

supported by multiple bearings of different types. A spindle-bearing system supported by ball and 

cylindrical roller bearings is considered. The de Mul’s bearing model is extended for calculating 

ball and cylindrical roller bearing stiffness matrices with inclusion of centrifugal force and 

gyroscopic moment. The dependence between spindle shaft reaction forces and bearing stiffness 

is effectively resolved using an iterative approach. The spindle rotor dynamics is established with 

the Timoshenko beam theory based finite elements. The spindle reaction forces, bearings 

stiffness and spindle natural frequencies are obtained with taking into account spindle radial load, 

ball bearing axial preload and rotational speed effects. The developed method is verified by 

comparing the simulation results with those from a commercial program. 

 

Key Words: Spindle-bearing system (스핀들 베어링 계), Angular contact ball bearing (각접촉 볼베어링), Cylindrical roller 

bearing (원통 롤러 베어링), Stiffness matrix (강성행렬), Natural frequency (고유진동수) 

 

 

1. Introduction 

 

Spindle is an essential part in machine tools because 

its rotor dynamic characteristics have a great influence on 

the overall performance of machine tools such as 

precision machining, service life of tooling and 

accessories, productivity, etc. Nowadays, combination of 

different bearing types in a spindle system is prevalent to 

improve the performance of machine tools. The 

combined use of ball and cylindrical roller bearings in a 

spindle shaft is believed to give an enhancement in load 

carrying capacity and thermal stability.1 

The finite element model is commonly used in rotor 

dynamic analysis of spindle-bearing system.2-4 It has been 

acknowledged that the finite element technique can 

provide an accurate modeling of rotor-bearing systems 

and be applicable to a wide range of complex problems in 

practical engineering design.5 In the past, however, the 

finite element based rotor dynamic model normally 

adopted the stiffness coefficients of rolling element 
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bearings as given parameters that were assumed to be 

constant during operation of spindle system. Recently, 

many researchers have shown that the bearing 

coefficients strongly depend on the rotational speed and 

loading conditions.6-8 Thus, it is necessary to address the 

coupling between the bearing and spindle in order to 

obtain accurate bearing stiffness elements along with the 

spindle dynamic characteristics. 

Several research results have been published 

regarding the coupling of spindle and bearing system. 

Jorgensen and Shin9 analyzed the angular contact bearing 

stiffness and natural frequencies of the spindle with the 

radial load applied. In their study, the spindle shaft was 

discretized into lumped elements with which the 

influence coefficient method was applied to find the load 

deflection relationship. This method could be applied 

only for spindles supported by two bearings or two sets of 

bearings in which each set of bearings is modeled as a 

stiffness matrix at a single node. Thus, the accuracy of 

the model with multiple bearings was improper, as well 

as the model was confined to spindles supported by two 

sets of bearings. In addition, the determination of bearing 

induced moment was not mentioned. 

Hong et al.10 improved the Jorgensen and Shin’s 

model9 so as to apply for indeterminate spindle-bearing 

systems supported by more than 2 bearings. A new 

iterative process was proposed to derive reaction forces 

and bearing stiffness based on the static finite element 

spindle model.  

Cao and Altintas11 outlined a general method for 

modeling of spindle-angular contact bearing systems. The 

combination of bearing dynamic characteristics and 

spindle shaft using finite element method was performed 

to derive the dynamic equations for spindle-bearing 

systems, which were then iteratively solved by the 

Newton Raphson technique. Although their method was 

verified to be accurate, much computational effort was 

required to solve non-linear equations simultaneously.  

Most of the previous studies attempted to couple 

bearing stiffness in the spindle shaft based on finite 

element model. Then the unknowns of the system were 

obtained using iterative methods. However, few 

researches are available on the rotor dynamics of spindle 

with combined multiple bearings of different types under 

general loading conditions. This is due to the lack of an 

effective method to model the coupling between shaft and 

bearings, especially in indeterminate spindle-bearing 

systems. 

This paper extends the earlier work proposed by 

Hong et al.10 to develop a new scheme for calculation of 

bearing stiffness and spindle shaft reaction forces. The 

most important contribution of this work is modifying the 

spindle load and deflection formulation using the so-

called modified transfer matrix method. The overall 

computational procedure is in the same manner as that in 

Hong et al.10 The developed technique is then applied for 

determining natural frequencies of a spindle assembly 

supported by angular contact ball and cylindrical roller 

bearings under radial, axial loadings and rotational speed 

effects. Finally, the presented model is verified with a 

commercial program.12 

 

2. Ball and roller bearing models 

 

The ball and roller bearing models proposed by de 

Mul et al.13 are extended in this study. The ball bearing 

model takes into account the effects of gyroscopic 

moment, which is neglected in the de Mul’s model. 

Regarding cylindrical roller bearing, a simplified model 

is developed by applying a few appropriate modifications 

from the tapered roller bearing model.8 

In this paper, all the bearing friction and cage forces, 

thermal expansion of components and lubrication film are 

neglected. Only the deformation at the contact location 

between rollers and races is considered, while the bearing 

races are assumed to remain circular under loading. 

 

2.1 Ball bearing model 

A five-degree-of-freedom (DOF) ball bearing model 

is adopted as shown in Fig. 1(a). The bearing is loaded by 

external load vector {F}T = {Fx, Fy, Fz, My, Mz} and 

displaces by a displacement vector {δ}T = {δx, δy, δz, γy, 

γz}. Displacements of inner ring cross-section and contact 

load are defined, respectively, by 
 

    {u}T = {ur, ux, θ};  {Q}T = {Qr, Qx, T}  (1) 
 

where {u} depends on global displacement by: 
 

{u} = [RΦ]{δ}                  (2) 
 

where the transformation matrix [RΦ] is given as 
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The ball center displacement is indicated by 

 

{v}T = {vr, vx}                (3) 

 

The ball loading including the centrifugal force and 

gyroscopic moment is shown in Fig. 1(b). Fc and Mg are 

the centrifugal force and gyroscopic moment of the ball 

(see Harris14). The contact forces are calculated using the 

Hertzian theory, as 

 

         3 / 2

i i i
Q K δ= ; 3 / 2

e e e
Q K δ=  (4) 

 

The contact deformation can be calculated from the 

geometric relationship shown in Fig. 2, as 

 

          
0i i i

l lδ = − ; 
0e e e

l lδ = −  (5) 

 

Having obtained all the loads acting on the ball, one 

can obtain equilibrium equations at each ball as: 
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 (6) 

The Newton-Raphson method is used to solve this 

system of non-linear equations for the 2 unknowns {vr, 

vx}. After the ball equations are solved, one can obtain 

the contact load of inner race as 
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Summation of external load and all contact loads 

acting on the inner ring gives the global equilibrium of 

bearing as 

 

         { } [ ] { } { }
1

0

n
T

j
j

F R Q
=

+ Φ =∑  (8) 

 

The iterative Newton-Raphson method is also 

employed for solving the above global equations to 

obtain the unknowns {δx, δy, δz, γy, γz}. The bearing 

stiffness matrix can be calculated by referring to de Mul 

et al.13 as 

 

   
{ }
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2.2 Roller bearing model 

The cylindrical roller bearing can freely move in the 

axial direction. Thus, the external load and displacement 

vectors need only 4 DOFs, which can be expressed as, 

(Fig. 3(a)). 

(a) (b) 

Fig. 1 Ball bearing diagram (a) Coordinate systems and

loadings (b) Ball free-body diagram 

 

Fig. 2 Ball center, inner and outer race curvature center 

before and after loading 
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           {F}T = {Fy, Fz, My, Mz} (10) 
 

            {δ}T = {δy, δz, γy, γz} (11) 

 

Due to the fact that the number of DOFs is reduced to 

4, modeling procedure for the cylindrical roller bearing is 

a simplified version of aforementioned ball bearing 

model. The displacement of inner ring cross-section and 

contact load can be deduced from Eq. (1) as 

 

       {u}T = {ur, θ}; {Q}T = {Qr, T} (12) 

 

From the roller free-body diagram shown in Fig. 3(b), 

one can obtain the roller equilibrium equation as 
 

            
0

0

i e c

i e g

Q Q F

M M M

− + =⎧⎪
⎨

− − =⎪⎩
 (13) 

 

The roller-races contact loads can be calculated using 

the slicing technique.13 The roller contact length is 

divided into ns number of slices, and the contact force is 

then evaluated for each slice as  
 

          ( )
10

9 ; 0
k k k k

q c lδ δ= Δ >  (14) 

 

The total contact forces and moments become 
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The inner ring contact load is found as 
 

              { } i

i

Q
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M
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 (16)  

 

The global equilibrium equations for the cylindrical 

roller bearing and the stiffness matrix expressions are 

similar to Eqs. (8) and (9). It is noted that both roller and 

global equilibrium equations are non-linear and should be 

solved using an iterative method such as the Newton-

Raphson method.  

 

3. Spindle shaft load-deflection calculation using 

modified transfer matrix method 

 

A new scheme for calculating spindle shaft deflection 

is considered here. It is noted that the Euler-Bernoulli 

beam theory does not give accurate deflection results, 

particularly in the case of thick beam, since the rotary 

inertia and shear deformation are not taken into account. 

Therefore, this section aims to improve the computational 

accuracy by using the Timoshenko beam theory.  

Fig. 4 shows the spindle shaft, which is divided into n 

portions corresponding to the shaft steps. Considering the 

elastic deflection vi(x) at the cross section position x (li-1 ≤ 

x ≤ li) of portion i whose total length Li = li – li-1. vi(x) can 

be expressed in the following form: 
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where v0i denotes the elastic deflection at the left end of 

portion i. v0i
(k) is the kth derivative of v0i with respect to x 

(k = 1 ÷ n).  
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Fig. 3 Cylindrical roller bearing diagram (a) Coordinate 

systems and loadings (b) Roller free-body 

diagram 
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Fig. 4 Spindle shaft with n portions 
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Consider a function as below,  
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Here, function Φk possesses the following feature 
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Substituting Eq. (18) into Eq. (17) and then taking 

derivative the resultant equation with respect to x gives 
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Eq. (20) can be re-expressed in a matrix form as 
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From the Timoshenko beam theory, the following 

relationship can be applied 
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where ϕi(x), Mi(x) and Qi(x) are the shaft angle of 

deflection, bending moment and shear force at the cross-

section x of portion i, respectively. Ei and Gi indicate the 

elastic and shear moduli of the shaft member. The 

geometric parameters Ai, Ii and κi denote the cross-

section area, moment of inertia and shear coefficient, 

respectively. 

In the case of a shaft under concentrated radial load, 

it is found that 
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where v0i, ϕ0i, M0i and Q0i represent the elastic deflection, 

deflection angle, bending moment and shear force at the 

left end of portion i, respectively. These values are 

determined by 
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where (vi-1, ϕi-1, Mi-1, Qi-1)
T are the corresponding values 

at the cross section x = li-1, which have been determined 

from the previous step using a similar process. (Δvi-1,  

Δϕi-1, ΔMi-1, ΔQi-1)
T indicates the added values for the left 

end of portion i. 

Substituting Eqs. (22)-(25) into Eq. (21), the load-

deflection equation for an arbitrary portion of the shaft is 

obtained as 
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Using the formula shown in Eq. (26), the governing 

equations for the first and second portions can be derived. 

For the first portion, one can get 
 

{ } { } { } { }( ) { }1 1 0 01 01 01
( ) [ ]S x B S S H H= + Δ − Δ + Δ  (33) 

 

Because {Si-1} = {S0} = 0, Eq. (33) can be further 

simplified to 
 

   { } { } { }( ) { }1 1 01 0 0
( ) [ ]

i i
S x B S H H= Δ − Δ + Δ  (34) 

 

Similarly, the governing equation for the second portion 

can be written as 
 

  { }( ) { }*
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It should be noted that 
 

           { } { }*

1 1 1
( )S S x l= =  (36) 

 

The above scheme is used for formulating the 

relationship of the spindle shaft deflections and reaction 

forces. It is obvious that the developed scheme could be 

applicable to a variety of cross-section areas, with 

different materials and also with general loadings.  

 

4. Natural frequency prediction using finite 

element model 

 

In this study, the spindle model using Timoshenko 

beam element as presented in Hong et al.4 is used for 

shaft dynamic modeling. The model consists of a spindle 

shaft and bearings located at nodes. The internal damping 

is ignored. The equation of motion for a shaft element is 

described as 
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In Eq. (37), ms and gs denote the (4x4) mass and 

gyroscopic matrices of shaft element, respectively. {y}T 

and {z}T indicate (4x1) displacement vectors in x-y and x-

z planes.  

With neglecting axial displacement of the shaft, the 

bearing is represented as 

          

b b bb
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where {fy
b fz

b}T is the bearing force vector. The matrix 

kij
b,(i,j=y,z) represents (2x2) bearing stiffness matrix 

obtained from the bearing model.  

Combining the shaft element and bearing equations 

gives 
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The state space form of Eq. (39) can be written as 
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The eigenvalue problem in association with Eq. (41) 

can be written as 
 

           [ ] [ ]( ){ } { }0A B hα + =  (42) 

 

where α and h denote the eigenvalue and corresponding 

eigenvector, respectively. 

 

5. Calculation procedure 

 

Because the bearing stiffness depends on shaft 

reaction forces, and vice-versa, the bearing stiffness and 

reaction forces should be determined simultaneously.  

Fig. 5 shows the block diagram of the entire 

calculation process. The procedure starts with assuming 

the radial displacements of bearings. At the first iteration, 

the induced moments at bearings are assumed to be zero. 

In the next step, the shaft reaction forces and deflections 

are determined using the modified transfer matrix method. 

The output from this step is used to calculate the bearing 

behavior, e.g., radial displacements, stiffness, induced 

moments. Then, the iteration process is repeated until the 

shaft reaction force differences between the current and 

previous steps are small enough. After the convergence is 

attained, the spindle natural frequencies are estimated 

using the dynamic finite element model. 
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Fig. 5 Calculation block diagram 

 

6. Computational results 

 

In this section, simulation is performed using Matlab 

to demonstrate the proposed method. Two kinds of 

bearings such as angular contact bearing B7014 and 

cylindrical bearing NU1014, are considered throughout 

the simulation work. The computational results are verified 

by comparing with those from a commercial program. 

 

6.1 Model verification 

The shaft bearing system is loaded with a radial load 

of Fr = 10,000 N. An axial preload at the middle bearing 

is Fa = 250 N as shown in Fig. 6. The rotational speed of 

spindle is n = 5,000 rpm. 

Table 1 compares the shaft reaction forces in radial 

direction from the simulation results using the developed 

model and the reference program. Table 2 summarizes 

the induced bearing moments from the developed 

program and the reference program. Both Tables 1 and 2 

exhibit only minor errors between the developed program 

and the reference program results. 

The bearing stiffness coefficients are also compared 

in Fig. 7. As can be seen in Fig. 7, the maximum 

difference between the simulation and reference is 1.17% 

in terms of angular stiffness coefficient kθyθy. 
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Fig. 6 Simple indeterminate spindle angular contact 

bearing system 

 

Table 1 Radial reaction forces at bearing locations (N) 

Bearings 1 2 3 

Reference 15702.55 -750.01 -4952.54

Simulation 1.57E4 -748.241 -4.95E3 

Error (%) 0.003 0.236 0.036 

 

Table 2 Induced bearing moment loads (Nmm) 

Bearings 1 2 3 

Reference 167730 5960 -75420 

Simulation 1.68E5 5.99E3 -7.54E4 

Error (%) 0.143 0.433 0.005 
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Fig. 7 Bearings stiffness comparison 

 

6.2 Application to an actual spindle system 

Fig. 8 shows the investigated spindle-bearing system. 

The radial load (Fr) is applied at the left end of the 

spindle to emulate the cutting load during operation. The 

load Fr is selected from 1,500 to 2,000N, while the 

rotational speed of system remains constant at n = 

5,000rpm.  

Figs. (9)-(11) demonstrate the radial stiffness 

coefficients of cylindrical roller and ball bearings, natural 

frequencies of spindle-bearing system as a function of 

applied radial load. The stiffness and frequency 
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differences between the developed program and reference 

program are very small. 

7. Conclusions 

 

A modeling program for spindle-bearing system has 

been developed for spindles supported by multiple 

bearings of different types. An indeterminate spindle-

bearing system with angular contact ball bearings and 

cylindrical roller bearings is investigated to demonstrate 

the program. The simulation results show that the 

developed program can well predict the bearing stiffness 

and spindle dynamic behavior under general loading 

conditions. 
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