• Title/Summary/Keyword: Calcium toxicity

Search Result 138, Processing Time 0.025 seconds

The Effects of Calcium Phosphate Glass on Mouse Calvarial Cell (Calcium Phosphate Glass가 마우스 두개골 세포에 미치는 영향)

  • Kim, Min-Kyoung;Kim, Chang-Sung;Lee, Doug-Youn;Lee, Yong-Keun;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.1
    • /
    • pp.49-59
    • /
    • 2004
  • The goal of periodontal treatment is not only to arrest the progression of the disease but also to promote the functional, esthetic regeneration of the periodontium. Flap operation, bone graft, guided tissue regeneration, growth factors and bone morphogenetic protein have been used for this purpose. Among these techniques of regeneration, alloplastic graft, especially calcium phosphate is getting more attention recently. The purpose of this study was to evaluate the effects of calcium phosphate glass on mouse calvarial cell in vitro. The toxicity of calcium phosphate glass was measured using MTT assay, the synthesis of collagen was measured using collagen assay, and ALP activity was measured. The experimental groups were cultured with calcium phosphate glass(both AQ-, and HT-CPG) in concentration of 0.01, 0.02, 0.1, 0.2g/ml. The results are as follows 1. In concentrations not exceeding 0.02g/ml, both the groups(AQ-CPG, HT-CPG) didn't show any toxicity on mouse calvarial cell(p<0.05). 2. In both the experimental groups are the concentration of 0.02g/ml, collagen expressions were significantly up-regulated (p<0.05). 3. In both the experimental groups are the concentration of 0.02g/ml, ALP activity was not significantly up-regulated, but ALP activity in both experimental groups were greater than control group(p<0.05). The results suggested that the use of calcium phosphate glass may promotes periodontal regeneration. Ongoing studies are necessary in order to determine their regeneration effects.

Effect of Dietary Protein and Cysteine Levels on Cadmium Toxicity in Rats (식이 단백질과 cysteine 수준이 흰쥐의 Cadmium 중독에 미치는 영향)

  • 김미경
    • Journal of Nutrition and Health
    • /
    • v.29 no.5
    • /
    • pp.461-471
    • /
    • 1996
  • This study was performed to investigate the effect of dietary protein and cysteine levels on cadmium toxicity in rats. Seventy-two male rats of Sprague-Dawley strain weighting 171$\pm$3g were blocked into 12 groups according to body weight, and were raised for 30 days. cadmium chloride was given at levels of 0 or 400ppm, protein at levels of 7, 15 and 40%, and cysteine was added(total dietary cysteine contents : 0.45%) to diet or not. The results are summarized as follow. Food intake, weight gain, food were lower than those of cadmium free group. But, these were increased with increasing dietary protein level and cysteine addition. Fecal cadmium excretion was remarkably increased in high protein (40%) groups. Thus, cadmium retention rates were decreased in high protein groups. Metallothionein concentrations in liver and kidney were increased in cysteine addition, and cadmium administration. Especially, these were remarkably increased in cadmium and cysteine added groups. Urinary calcium excretion was increased with cadmium administration, but urinary protein excretion and creatinine clearance were not changed in these animal. In conclusion, food intake, weight gain and organ weights were decreased with administration. Cadmium toxicity was alleviated by increasing fecal cadmium excretion, while cysteine addition increased metallothionein concentrations in liver and kidney. From these results, it was shown that cadmium toxicity was alliviated by synergistic effect of high protein level and cysteine addition.

  • PDF

Experimental Intervention to Reverse Inhibition of Nitric Oxide Production by Cyclosporin A in Rat Aortic Smooth Muscle Cells (혈관평활근세포에서 Cyclosporin A에 의한 Nitric Oxide 생성억제를 길항하는 실험적 중재법)

  • Kim, In-Kyeom
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.211-219
    • /
    • 1996
  • The inhibitory effect of cyclosporin A (CsA) on nitric oxide production is not related to the immunosuppressive action of the drug, but to the renal toxicity and arterial hyper-tension. In this study the experimental interventions to reverse the inhibition of nitric oxide production by cyclosporin A in rat aortic smooth muscle cells were examined. CsA inhibited the accumulation of nitrite, the stable end product of nitric oxide, in culture media in a concentration $(0.1{\sim}100{\mu}g/ml)-dependent$ manner. The inhibitory effect of CsA on nitrite accumulation were not antagonized by arginine (10 mM), a substrate of nitric oxide synthase, nor by calcium ionophore A23187 $(7{\mu}M)$. Forskolin, an activator of adenylate cyclase, which enhanced iNOS induction at transcriptional level, completely reversed the inhibitory action of CsA on nitrite accumulation. However, PMA (2 nM) and PDB (50 nM), PKC activators, increased the inhibitory action of CsA on nitrite accumulalion. From these results, it is suggested that cyclic AMP-elevating agents may be candidates of therapeutic agents in prevention and treatment of renal toxicity and arterial hypertension induced by CsA. Among conventional antihypertensive drugs, calcium channel blockers and ${\alpha}-blockers$ are preferred to ${\beta}-blockers$.

  • PDF

Aquatic Toxicity Assessment of Phosphate Compounds

  • Kim, Eunju;Yoo, Sunkyoung;Ro, Hee-Young;Han, Hye-Jin;Baek, Yong-Wook;Eom, Ig-Chun;Kim, Hyun-Mi;Kim, Pilje;Choi, Kyunghee
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.2.1-2.7
    • /
    • 2013
  • Objectives Tricalcium phosphate and calcium hydrogenorthophosphate are high production volume chemicals, mainly used as foodstuff additives, pharmaceuticals, lubricants, synthetic resin, and disinfectants. Phosphate has the potential to cause increased algal growth leading to eutrophication in the aquatic environment. However, there is no adequate information available on risk assessment or acute and chronic toxicity. The aim of this research is to evaluate the toxic potential of phosphate compounds in the aquatic environment. Methods An aquatic toxicity test of phosphate was conducted, and its physico-chemical properties were obtained from a database recommended in the Organization for Economic Cooperation and Development (OECD) guidance manual. An ecotoxicity test using fish, Daphnia, and algae was conducted by the good laboratory practice facility according to the OECD TG guidelines for testing of chemicals, to secure reliable data. Results The results of the ecotoxicity tests of tricalcium phosphate and calcium hydrogenorthophosphate are as follows: In an acute toxicity test with Oryzias latipes, 96 hr 50% lethal concentration ($LC_{50}$) was >100 (measured:>2.14) mg/L and >100 (measured: >13.5) mg/L, respectively. In the Daphnia test, 48 hr 50% effective concentration ($EC_{50}$) was >100 (measured: >5.35) mg/L and >100 (measured: >2.9) mg/L, respectively. In a growth inhibition test with Pseudokirchneriella subcapitata, 72 hr $EC_{50}$ was >100 (measured: >1.56) mg/L and >100 (measured: >4.4) mg/L, respectively. Conclusions Based on the results of the ecotoxicity test of phosphate using fish, Daphnia, and algae, $L(E)C_{50}$ was above 100 mg/L (nominal), indicating no toxicity. In general, the total phosphorus concentration including phosphate in rivers and lakes reaches levels of several ppm, suggesting that phosphate has no toxic effects. However, excessive inflow of phosphate into aquatic ecosystems has the potential to cause eutrophication due to algal growth.

Evaluation of T-Type Calcium Channel Blockers against Human Pancreatic MIA PaCa-2 Carcinoma Xenografts

  • Park, Jin Yeong;Choi, Heung Woo;Choi, Doo Li;Jang, Sun Jeong;Kim, Je Hak;Lee, Joo Han;Choo, Dong Joon;Kim, Jungahn;Lee, Kyung-Tae;Lee, Jae Yeol
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.482-488
    • /
    • 2013
  • Two piperazine-containing 3,4-dihyroquinazolines (BK10007S/8S) have been synthesized, based on our previous work on the synthesis and antitumoral activity of 3,4-dihyroquinazolines. After evaluating them for T-type calcium channel blocking effect and in vitro anti-cancer effect, they were profiled for acute and repeat dose toxicity (40 mg/kg, 2 weeks) to BALB/c mice. BK10007S/8S were further in vivo evaluated against human pancreatic MIA PaCa-2 carcinoma in $BALB/c^{nu/nu}$ nude mice, which exhibited 54 and 61% tumor growth inhibition through 57-day oral administration of 2 mg/kg of body weight, respectively.

Protective Effect of Chlorogenic Acid against Aβ-Induced Neurotoxicity

  • Lee, Chan-Woo;Won, Tae-Joon;Kim, Hak-Rim;Lee, Dong-Ho;Hwang, Kwang-Woo;Park, So-Young
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.181-186
    • /
    • 2011
  • Beta-amyloid (A${\beta}$) is considered as one of the major causes of Alzheimer's disease. This study examined the neuroprotective effects of chlorogenic acid, a naturally occurring polyphenol which is distributed widely in plants, fruits and vegetables, against A${\beta}$-induced toxicity. A${\beta}$ decreased significantly the viability of PC12 cells. This was accompanied by an increase in the intracellular calcium levels and cleaved caspase-3. In addition, A${\beta}$ induced an increase in Bax, and a decrease in Bcl-2 compared to the controls. However, a pre-treatment with chlorogenic acid rescued the PC12 cells from A${\beta}$ by attenuating the elevated intracellular calcium levels and reducing the levels of the apoptosis related proteins, including caspase-3, Bcl-2 and Bax. These results suggest that the protective effects of chlorogenic acid are, at least in parts, by attenuating the intracellular calcium influx and reducing apoptosis induced by A${\beta}$.

Solidification and Leaching Characteristics of Cyclone Ash from Industrial Incineration Plant

  • Lee, Dong-Choon;Kim, Young-Ju
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_2
    • /
    • pp.89-95
    • /
    • 2001
  • The solidification and leaching characteristics of cyclone ash collected from an industrial incineration plant were investigated. Cement and calcium hydroxide were used as the solidifying materials. The leaching characteristics of the solidified cyclone ash were found to vary depending on both the quantitative and the qualitative aspects of the solidifying materials. Except for copper and lead, all the heavy metal ions in the leachate of the solidified material composed of 10~20 % cement or 10~20 % calcium hydroxide were found to be within their standard limit. Moreover, all the heavy metal ions were also observed to be within satisfactory limits in the leachate obtained from the solidified material composed of 30 % cement or 30 % calcium hydroxide. Therefore, to satisfy the standard compressive intensity and permissible limits of heavy metal ions leached from solidified material, it would appear that a 30 % proportion of either additive in the solidification product can meet the required standard for the leachate. The cost of solidifying cyclone ash per ton for ash-30 % cement and ash-30 % lime was calculated as 26,750 and 26,070 won, respectively. Accordingly, significant reduction in the waste toxicity and mobility as well as an improvement in the engineering properties of the solidified products were successfully achieved.

  • PDF

Efficient Establishment of Presumptive Embryonic Stem Cells from Bovine Blastocysts by Exposure to Calcium Ionophore (Calcium Ionophore를 이용한 소 배반포로 부터의 배아주 유사세포의 효과적인 분리)

  • 김선욱;류재웅;이철상;한용만;박정선;유대열;이경광
    • Development and Reproduction
    • /
    • v.3 no.1
    • /
    • pp.45-51
    • /
    • 1999
  • It is crucial to remove trophectoderm (TE) cells of blastocysts for an efficient isolation of pluripotent embryonic stem (ES)-like cells from bovine blastocysts. We evaluated the effectiveness of chemosurgery using calcium ionophore A23l87 (CIPA) by investigating the viability and pluripotency of ES-like cell lines isolated from in vitro-produced bovine blastocysts after CIPA treatment. The blastocysts treated with 50 $\mu$M CIPA for 25 min colonized most efficiently (51% of blastocysts) and developed to ES-like cell lines through 10 passages (4.8% of blastocysts) among CIPA-treated groups with different concentration and duration. In comparison with CIPA-untreated blastocysts, the colonization rate and overall viability of the CIPA-treated blastocysts were five times higher, suggesting that CIPA treatment condition defined in this study was highly efficient for establishing ES-like cell lines without apparent toxicity of CIPA. We evaluated in vitro pluripotency of the established three ES-like cell lines by examining alkaline phosphatase (AP) activity, capability of embryoid body formation, and chromosomal euploidity of the cells. Our cells showed a heterogeneous AP activity similarly to other reports. The cells were able to form simple embryoid bodies during suspension culture and majority of them showed a normal chromosome number of 60, the euploid chromosomal complement of bovine Therefore, our data suggest that CIPA treatment can be safely used for an efficient isolation of ES-like cell lines from bovine blastocysts.

  • PDF

T-Type Calcium Channels Are Required to Maintain Viability of Neural Progenitor Cells

  • Kim, Ji-Woon;Oh, Hyun Ah;Lee, Sung Hoon;Kim, Ki Chan;Eun, Pyung Hwa;Ko, Mee Jung;Gonzales, Edson Luck T.;Seung, Hana;Kim, Seonmin;Bahn, Geon Ho;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.439-445
    • /
    • 2018
  • T-type calcium channels are low voltage-activated calcium channels that evoke small and transient calcium currents. Recently, T-type calcium channels have been implicated in neurodevelopmental disorders such as autism spectrum disorder and neural tube defects. However, their function during embryonic development is largely unknown. Here, we investigated the function and expression of T-type calcium channels in embryonic neural progenitor cells (NPCs). First, we compared the expression of T-type calcium channel subtypes (CaV3.1, 3.2, and 3.3) in NPCs and differentiated neural cells (neurons and astrocytes). We detected all subtypes in neurons but not in astrocytes. In NPCs, CaV3.1 was the dominant subtype, whereas CaV3.2 was weakly expressed, and CaV3.3 was not detected. Next, we determined CaV3.1 expression levels in the cortex during early brain development. Expression levels of CaV3.1 in the embryonic period were transiently decreased during the perinatal period and increased at postnatal day 11. We then pharmacologically blocked T-type calcium channels to determine the effects in neuronal cells. The blockade of T-type calcium channels reduced cell viability, and induced apoptotic cell death in NPCs but not in differentiated astrocytes. Furthermore, blocking T-type calcium channels rapidly reduced AKT-phosphorylation (Ser473) and $GSK3{\beta}$-phosphorylation (Ser9). Our results suggest that T-type calcium channels play essential roles in maintaining NPC viability, and T-type calcium channel blockers are toxic to embryonic neural cells, and may potentially be responsible for neurodevelopmental disorders.

Effects of Caffeine and calcium on the activities of the mouse osteoblastic cells (카페인과 칼슘이 골모 세포의 활성에 미치는 영향)

  • Chun, Youn-Sic;Baik, Hye-Jung
    • The korean journal of orthodontics
    • /
    • v.32 no.2 s.91
    • /
    • pp.129-142
    • /
    • 2002
  • The purpose of this study was to evaluate the effects of caffeine and calcium on the activities of the osteoblastic cell from mouse calvaria. The author cultured osteoblastic cells obtained from the mouse calvaria and were divided into three groups : the caffeine-treated, the calcium-treated and the combine-treated group. In caffeine-treated group, the cell toxicity was measured by MTT assay at 1, 2 and 4 days after treatment of caffeine. In all groups, the densities of the mineralized bone nodules were measured by imaging analyzer after Von Kossa staining. The alkaline phosphotase (ALP) activities were measured at 2, 7, 14, 21 and 28 days and the interleukin-1 ${\beta}$ activities at 48 hours after treatment of caffeine and calcium. The measurements were statistically executed with ANOVA test and the results were as follows. 1. The cellular toxicity of the caffeine increased with the concentration of caffeine during the incubation period. 2. The maximum densities of mineralization were observed at 0.2 mM caffeine-treated group, 1.2 mM calcium-treated group, 0.1 mM caffeine and 1.8 mM calcium-treated group. 3. The activities of ALP were peaked at 14 days at calcium-treated group as no-treated. But, the activities of ALP increased with concentrations of caffeine at caffeine-treated group. At combine-treated group, the act of ALP were peaked at 24 days at 1.2 mM, 1.8 mM calcium-treated group, But decreased at 2.5 mM calcium-treated group. 4. The activites of the IL-1 ${\beta}$ were increased significantly at 0.2 mM caffeine-treated group, 1.8 mM calcium-treated group and 0.1 mM caffeine and 1.8 mM calcium-treated group. But, they were decreased at all groups of high concentration.