• 제목/요약/키워드: Calcium signaling

검색결과 247건 처리시간 0.026초

Pregnancy Recognition Signaling for Establishment and Maintenance of Pregnancy

  • Bazer, Fuller W.
    • 한국가축번식학회지
    • /
    • 제23권4호
    • /
    • pp.365-369
    • /
    • 1999
  • Interferon tau (IFN$\tau$), the pregnancy recognition signal in ruminants, suppresses transcription of the estrogen receptor (ER) gene in the endometrial luminal (LE) and superficial glandular epithelium (sGE) to prevent oxytocin receptor (OTR) expression and pulsatile release of luteolytic prostaglandin $F_{2{\alpha}}$ (PGF), Interferon regulatory factors one (IRF-l) and two (IRF-2) are transcription factors induced by IFN$\tau$ that activate and silence gene expression, respectively. Available results suggest that IFN$\tau$ acts directly on LE and sGE during pregnancy to induce sequentially IRF-l and then IRF-2 gene expression to silence transcription of ER and OTR genes, block the luteolytic mechanism to maintenance a functional corpus luteum (CL) and, signal maternal recognition of pregnancy. The theory for maternal recognition of pregnancy in pigs is that the uterine endometrium of cyclic gilts secretes PGF in an endocrine direction, toward the uterine vasculature for transport to the CL to exert its luteolytic effect. However, in pregnant pigs, estrogens secreted by the conceptuses are responsible, perhaps in concert with effects of prolactin and calcium, for exocrine secretion of PGF into the uterine lumen where it is sequestered to exert biological effects and / or be metabolized to prevent luteolysis.

  • PDF

Quercetin Directly Interacts with Vitamin D Receptor (VDR): Structural Implication of VDR Activation by Quercetin

  • Lee, Ki-Young;Choi, Hye-Seung;Choi, Ho-Sung;Chung, Ka Young;Lee, Bong-Jin;Maeng, Han-Joo;Seo, Min-Duk
    • Biomolecules & Therapeutics
    • /
    • 제24권2호
    • /
    • pp.191-198
    • /
    • 2016
  • The vitamin D receptor (VDR) is a member of the nuclear receptor (NR) superfamily. The VDR binds to active vitamin $D_3$ metabolites, which stimulates downstream transduction signaling involved in various physiological activities such as calcium homeostasis, bone mineralization, and cell differentiation. Quercetin is a widely distributed flavonoid in nature that is known to enhance transactivation of VDR target genes. However, the detailed molecular mechanism underlying VDR activation by quercetin is not well understood. We first demonstrated the interaction between quercetin and the VDR at the molecular level by using fluorescence quenching and saturation transfer difference (STD) NMR experiments. The dissociation constant ($K_d$) of quercetin and the VDR was $21.15{\pm}4.31{\mu}M$, and the mapping of quercetin subsites for VDR binding was performed using STD-NMR. The binding mode of quercetin was investigated by a docking study combined with molecular dynamics (MD) simulation. Quercetin might serve as a scaffold for the development of VDR modulators with selective biological activities.

Melittin-induced Nociceptive Responses are Alleviated by Cyclooxygenase-1 Inhibitor

  • Kim, Joo-Hyun;Shin, Hong-Kee;Lee, Kyung-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권1호
    • /
    • pp.45-50
    • /
    • 2006
  • Melittin-induced pain model has been known to be very useful for the study of pain mechanism. Melittin-induced nociceptive responses are reported to be modulated by the changes in the activity of excitatory amino acid receptor, calcium channel, spinal serotonin receptor and extracellular signaling-regulated kinase. The present study was undertaken to investigate the role of cyclooxygenase (COX) in the melittin-induced nociception. Changes in mechanical threshold, flinchings and paw thickness were measured before and after intraplantar injection of melittin in the rat hind paw. Also studied were the effects of intraperitonealy administered diclofenac (25 mg & 50 mg/kg), piroxicam (10 mg & 20 mg/kg) and meloxicam (10 mg & 20 mg/kg) on the melittin-induced nociceptions. Intraplantar injection of melittin caused marked reduction of mechanical threshold that was dose-dependently attenuated by non-selective COX inhibitor (diclofenac) and selective COX-1 inhibitor (piroxicam), but not by COX-2 inhibitor (meloxicam). Melittin-induced flinchings were strongly suppressed by non-selective COX and COX-1 inhibitor, but not by COX-2 inhibitor. None of the COX inhibitors had inhibitory effects on melittin-induced increase of paw thickness (edema). These experimental findings suggest that COX-1 plays an important role in the melittin-induced nociceptive responses.

Inhibitory Effect of Alpiniae officinarum Rhizoma Extract on Degranulation in RBL-2H3 Cells

  • Kim, Eunhee;Ahn, Sejin;Lee, Deug-Chan
    • 한국자원식물학회지
    • /
    • 제28권3호
    • /
    • pp.321-328
    • /
    • 2015
  • Alpiniae officinarum Rhizoma (the rhizome of Alpinia officinarum Hance, known as lesser galangal), a family of Zingiberaceae, has been used to reduce pain of infection and inflammatory diseases in Asian countries. The present study was focused to evaluate the inhibitory degranulation effect of Alpiniae officinarum Rhizoma extract in RBL-2H3 rat basophilic leukemia cells. Cell viability was measured by MTT assay. RBL-2H3 cells were stimulated by phorbol 12-myristate 13-acetate and calcium ionophore A23187. Mast cell degranulation was analyzed by measuring release of β-hexosaminidase in RBL-2H3 cell. Gene expression was measured by qRT-PCR and signaling molecules were detected by immunoblotting. The Alpiniae officinarum Rhizoma extract suppressed β-hexosaminidase release in dose-dependent manner and inhibited cycloxygenase-2 and tumor necrosis factor-α gene expression. Furthermore, it was found that Alpiniae officinarum Rhizoma extract reduced mitogen-activated protein kinases, especially phosphorylated p38, at 0.75 ㎎/㎖ of Alpiniae officinarum Rhizoma extract concentrations. These data show that Alpiniae officinarum Rhizoma extract has immunosuppressive effect in mast cell induced allergic inflammation.

Cadmium-Induced Gene Expression is Regulated by MTF-1, a Key Metal- Responsive Transcription Factor

  • Gupta, Ronojoy-Sen;Ahnn, Joohong
    • Animal cells and systems
    • /
    • 제7권3호
    • /
    • pp.173-186
    • /
    • 2003
  • The transition metal cadmium is a serious occupational and environmental toxin. To inhibit cadmium-induced damage, cells respond by increasing the expression of genes that encode stress-responsive proteins. The metal-regulatory transcription factor 1 (MTF-1) is a key regulator of heavy-metal induced transcription of metallothionein-I and II and other genes in mammals and other metazoans. Transcriptional activation of genes by MTF-1 is mediated through binding to metal-responsive elements in the target gene promoters. Phosphorylation of MTF-1 plays a critical role in the cadmium-inducible transcriptional activation of metallothionein and other responses. Studies using inhibitors indicate that multiple kinases and signal transduction cascades, including those mediated by protein kinase C, tyrosine kinase and casein kinase II, are essential for cadmium-mediated transcriptional activation. In addition, calcium signaling is also involved in regulating metal-activated transcription. In several species, cadmium induces heat shock genes. Recently much progress has been made in elucidating the cellular machinery that regulates this metal-inducible gene expression. This review summarizes these recent advances in understanding the role of some known cadmium-responsive genes and the molecular mechanisms that activate metal-responsive transcription factor, MTF-1.

Identification of Genes Differentially Expressed in Wild Type and Purkinje Cell Degeneration Mice

  • Xiao, Rui;Park, Youngsook;Dirisala, Vijaya R.;Zhang, Ya-Ping;Um, Sang June;Lee, Hoon Taek;Park, Chankyu
    • Molecules and Cells
    • /
    • 제20권2호
    • /
    • pp.219-227
    • /
    • 2005
  • Purkinje cell degeneration (pcd) mice are characterized by death of virtually all cerebellar Purkinje cells by postnatal day 30. In this study, we used DNA microarray analysis to investigate differences in gene expression between the brains of wild type and pcd mice on postnatal day 20, before the appearance of clear-cut phenotypic abnormalities. We identified 300 differentially expressed genes, most of which were involved in metabolic and physiological processes. Among the differentially expressed genes were several calcium binding proteins including calbindin-28k, paravalbumin, matrix gamma-carboxyglutamate protein and synaptotagamins 1 and 13, suggesting the involvement of abnormal $Ca^{2+}$ signaling in the pcd phenotype.

New insight into transglutaminase 2 and link to neurodegenerative diseases

  • Min, Boram;Chung, Kwang Chul
    • BMB Reports
    • /
    • 제51권1호
    • /
    • pp.5-13
    • /
    • 2018
  • Formation of toxic protein aggregates is a common feature and mainly contributes to the pathogenesis of neurodegenerative diseases (NDDs), which include amyotrophic lateral sclerosis (ALS), Alzheimer's, Parkinson's, Huntington's, and prion diseases. The transglutaminase 2 (TG2) gene encodes a multifunctional enzyme, displaying four types of activity, such as transamidation, GTPase, protein disulfide isomerase, and protein kinase activities. Many studies demonstrated that the calcium-dependent transamidation activity of TG2 affects the formation of insoluble and toxic amyloid aggregates that mainly consisted of NDD-related proteins. So far, many important and NDD-related substrates of TG2 have been identified, including $amlyoid-{\beta}$, tau, ${\alpha}-synuclein$, mutant huntingtin, and ALS-linked trans-activation response (TAR) DNA-binding protein 43. Recently, the formation of toxic inclusions mediated by several TG2 substrates were efficiently inhibited by TG2 inhibitors. Therefore, the development of highly specific TG2 inhibitors would be an important tool in alleviating the progression of TG2-related brain disorders. In this review, the authors discuss recent advances in TG2 biochemistry, several mechanisms of molecular regulation and pleotropic signaling functions, and the presumed role of TG2 in the progression of many NDDs.

Functional Characterization of NtCDPK1 in Tobacco

  • Lee, Sang Sook;Yoon, Gyeong Mee;Rho, Eun Jung;Moon, Eunpyo;Pai, Hyun-Sook
    • Molecules and Cells
    • /
    • 제21권1호
    • /
    • pp.141-146
    • /
    • 2006
  • We previously showed that NtCDPK1, a tobacco calcium-dependent protein kinase, interacts with and phosphorylates the Rpn3 regulatory subunit of the 26S proteasome, and that both NtCDPK1 and Rpn3 are mainly expressed in rapidly proliferating tissues, including shoot and root meristem. In this study, we examined NtCDPK1 expression in roots using GUS expression in transgenic Arabidopsis plants, and investigated its function in root development by generating transgenic tobacco plants carrying a sense NtCDPK1 transgene. GUS activity was first detected in roots two days after sowing. In later stages, strong GUS expression was detected in the root meristem and elongation zone, as well as the initiation sites and branch points of lateral roots. Transgenic tobacco plants in which NtCDPK1 expression was suppressed were smaller, and their root development was abnormal, with reduced lateral root formation and less elongation. These results suggest that NtCDPK1 plays a role in a signaling pathway regulating root development in tobacco.

Role of nociceptin/orphanin FQ and nociceptin opioid peptide receptor in depression and antidepressant effects of nociceptin opioid peptide receptor antagonists

  • Park, Jong Yung;Chae, Suji;Kim, Chang Seop;Kim, Yoon Jae;Yi, Hyun Joo;Han, Eunjoo;Joo, Youngshin;Hong, Surim;Yun, Jae Won;Kim, Hyojung;Shin, Kyung Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권6호
    • /
    • pp.427-448
    • /
    • 2019
  • Nociceptin/orphanin FQ (N/OFQ) and its receptor, nociceptin opioid peptide (NOP) receptor, are localized in brain areas implicated in depression including the amygdala, bed nucleus of the stria terminalis, habenula, and monoaminergic nuclei in the brain stem. N/OFQ inhibits neuronal excitability of monoaminergic neurons and monoamine release from their terminals by activation of G protein-coupled inwardly rectifying $K^+$ channels and inhibition of voltage sensitive calcium channels, respectively. Therefore, NOP receptor antagonists have been proposed as a potential antidepressant. Indeed, mounting evidence shows that NOP receptor antagonists have antidepressant-like effects in various preclinical animal models of depression, and recent clinical studies again confirmed the idea that blockade of NOP receptor signaling could provide a novel strategy for the treatment of depression. In this review, we describe the pharmacological effects of N/OFQ in relation to depression and explore the possible mechanism of NOP receptor antagonists as potential antidepressants.

Melatonin inhibits nicotinic acetylcholine receptor functions in bovine chromaffin cells

  • Jo, Su-Hyun;Lee, Seung-Hyun;Kim, Kyong-Tai;Choi, Se-Young
    • International Journal of Oral Biology
    • /
    • 제44권2호
    • /
    • pp.50-54
    • /
    • 2019
  • Melatonin is a neurotransmitter that modulates various physiological phenomena including regulation and maintenance of the circadian rhythm. Nicotinic acetylcholine receptors (nAChRs) play an important role in oral functions including orofacial muscle contraction, salivary secretion, and tooth development. However, knowledge regarding physiological crosstalk between melatonin and nAChRs is limited. In the present study, the melatonin-mediated modulation of nAChR functions using bovine adrenal chromaffin cells, a representative model for the study of nAChRs, was investigated. Melatonin inhibited the nicotinic agonist dimethylphenylpiperazinium (DMPP) iodide-induced cytosolic free $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) increase and norepinephrine secretion in a concentration-dependent manner. The inhibitory effect of melatonin on the DMPP-induced $[Ca^{2+}]_i$ increase was observed when the melatonin treatment was performed simultaneously with DMPP. The results indicate that melatonin inhibits nAChR functions in both peripheral and central nervous systems.