• Title/Summary/Keyword: Calcium release channel

Search Result 76, Processing Time 0.03 seconds

The Effect of Hypoxia on the Release of Endothelium-derived Relaxing Factor in Rabbit Thoracic Aorta (토끼 대동맥 혈관내피세포에서 저산소증이 내피세포성 이완인자의 분비에 미치는 영향)

  • Choi, Soo-Seung
    • Journal of Chest Surgery
    • /
    • v.42 no.5
    • /
    • pp.588-596
    • /
    • 2009
  • Background: To clarify the effect of hypoxia on vascular contractility, we tried to show whether hypoxia induced the release of endothelium-derived relaxing factor (EDRF) and the nature of the underlying mechanism for this release. Material and Method: Isometric contractions were observed in rabbit aorta, and the released EDRF from the rabbit aorta was bioassayed by using rabbit denuded carotid artery. The intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) in the cultured rabbit aortic endothelial cells was recorded by a microfluorimeter with using Fura-2/AM. Hypoxia was evoked to the blood vessels or endothelial cells by eliminating the $O_2$ in the aerating gases in the external solution. Chemical hypoxia was evoked by applying deoxyglucose or $CN^-$. Result: Hypoxia relaxed the precontracted rabbit thoracic aorta that had its endothelium, and the magnitude of the relaxation was gradually increased by repetitive bouts of hypoxia. In contrast, hypoxia-induced relaxation was not evoked in the aorta that was denuded of endothelium. In a bioassay experiment, hypoxia released endothelium-derived relaxing factor (EDRF) and the release was inhibited by L-NAME or the $K^+$ channel blocker tetraethylammonium (TEA). In the cultured endothelial cells, hypoxia augmented the ATP-induced increase of the intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) and this increase was inhibited by TEA. Furthermore, chemical hypoxia also increased the $Ca^{2+}$ influx. Conclusion: From these results, it can be concluded that hypoxia might induce the release of NO from rabbit aortic endothelial cells by increasing $[[Ca^{2+}]_i$.

Inhibitory Effects of Ginsenoside-Rb2 on Nicotinic Stimulation-Evoked Catecholamine Secretion

  • Lim, Hyo-Jeong;Lee, Hyun-Young;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.5
    • /
    • pp.431-439
    • /
    • 2014
  • The aim of the present study was to investigate whether ginsenoside-Rb2 (Rb2) can affect the secretion of catecholamines (CA) in the perfused model of the rat adrenal medulla. Rb2 ($3{\sim}30{\mu}M$), perfused into an adrenal vein for 90 min, inhibited ACh (5.32 mM)-evoked CA secretory response in a dose- and time-dependent fashion. Rb2 ($10{\mu}M$) also time-dependently inhibited the CA secretion evoked by DMPP ($100{\mu}M$, a selective neuronal nicotinic receptor agonist) and high $K^+$ (56 mM, a direct membrane depolarizer). Rb2 itself did not affect basal CA secretion (data not shown). Also, in the presence of Rb2 ($50{\mu}g/mL$), the secretory responses of CA evoked by veratridine (a selective $Na^+$ channel activator ($50{\mu}M$), Bay-K-8644 (an L-type dihydropyridine $Ca^{2+}$ channel activator, $10{\mu}M$), and cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, $10{\mu}M$) were significantly reduced, respectively. Interestingly, in the simultaneous presence of Rb2 ($10{\mu}M$) and L-NAME (an inhibitor of NO synthase, $30{\mu}M$), the inhibitory responses of Rb2 on ACh-evoked CA secretory response was considerably recovered to the extent of the corresponding control secretion compared with the inhibitory effect of Rb2-treatment alone. Practically, the level of NO released from adrenal medulla after the treatment of Rb2 ($10{\mu}M$) was greatly elevated compared to the corresponding basal released level. Collectively, these results demonstrate that Rb2 inhibits the CA secretory responses evoked by nicotinic stimulation as well as by direct membrane-depolarization from the isolated perfused rat adrenal medulla. It seems that this inhibitory effect of Rb2 is mediated by inhibiting both the influx of $Ca^{2+}$ and $Na^+$ into the adrenomedullary chromaffin cells and also by suppressing the release of $Ca^{2+}$ from the cytoplasmic calcium store, at least partly through the increased NO production due to the activation of nitric oxide synthase, which is relevant to neuronal nicotinic receptor blockade.

Influence of Ketamine on Catecholamine Secretion in the Perfused Rat Adrenal Medulla

  • Ko, Young-Yeob;Jeong, Yong-Hoon;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.3
    • /
    • pp.101-109
    • /
    • 2008
  • The aim of the present study was to examine the effects of ketamine, a dissociative anesthetics, on secretion of catecholamines (CA) secretion evoked by cholinergic stimulation from the perfused model of the isolated rat adrenal gland, and to establish its mechanism of action, and to compare ketamine effect with that of thiopental sodium, which is one of intravenous barbiturate anesthetics. Ketamine ($30{\sim}300{\mu}M$), perfused into an adrenal vein for 60 min, dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic NN receptor agonist, $100{\mu}M$) and McN-A-343 (a selective muscarinic M1 receptor agonist, $100{\mu}M$). Also, in the presence of ketamine ($100{\mu}M$), the CA secretory responses evoked by veratridine (a voltage-dependent $Na^+$ channel activator, $100{\mu}M$), Bay-K-8644 (an L-type dihydropyridine $Ca^{2+}$ channel activator, $10{\mu}M$), and cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, $10{\mu}M$) were significantly reduced, respectively. Interestingly, thiopental sodium ($100{\mu}M$) also caused the inhibitory effects on the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, veratridine, Bay-K-8644, and cyclopiazonic acid. Collectively, these experimental results demonstrate that ketamine inhibits the CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors and the membrane depolarization from the isolated perfused rat adrenal gland. It seems likely that the inhibitory effect of ketamine is mediated by blocking the influx of both $Ca^{2+}$ and $Na^+$ through voltage-dependent $Ca^{2+}$ and $Na^+$ channels into the rat adrenal medullary chromaffin cells as well as by inhibiting $Ca^{2+}$ release from the cytoplasmic calcium store, which are relevant to the blockade of cholinergic receptors. It is also thought that, on the basis of concentrations, ketamine causes similar inhibitory effect with thiopental in the CA secretion from the perfused rat adrenal medulla.

Influence of Hypoxia on Catecholamine Secretion Evoked by DMPP, McN-A-343, Excess $K^+$ and ACh from The Perfused Rat Adrenal Gland (저산소증이 흰쥐 관류부신에서 DMPP, McN-A-343, Excess $K^+$ 및 Ach의 카테콜아민 분비작용에 미치는 영향)

  • Lim Dong-Yoon;Heo Jae-Bong;Park Yoo Han
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.1 s.57
    • /
    • pp.63-74
    • /
    • 1995
  • It has been known that, during hypoxia, the adrenal medulla is activated to release catecholamines (CA) while hypoxia also inhibits high $K^+$ -induced CA secretion in the cultured bovine adrenal chromaffin cells. The present study was attempted to examine the effect of hypoxia on CA secretion evoked by chlinergic stimulation and membrane-depolarization from the isolated perfused rat adrenal glands and also to clarify its mechanism of action. For this purpose, using the isolated rat adrenal glands, the effects of hypoxia on CA release evoked by nicotinic ($N_1$) and muscarinic ($M_1$) receptor agonists, membrane-depolarizing agent, $Ca^{++}$-channel activator, intracellular $Ca^{++}$-releaser and ACh were determined. Experiments were carried out, perfusing Krebs solution pre-equilibrated with a gas mixture of 95% N_2$ and 5% $CO_2$. Hypoxia was maintained for $3{\sim}4$ hours through the experiments. Hypoxia gradually caused a time-dependent seduction in CA secretion evoked by DMPP ($100{\mu}M$), McN-A-343 ($100{\mu}M$), ACh (5.32 mM), Bay-K-8644 ($10{\mu}M$) and high $K^+$ (56 mM) respectively. How-ever, it did not affect CA secretion evoked by cyclopiazonic acid ($10{\mu}M$). Hypoxia itself also did fail to produce any influence on spontaneous secretory response of CA. These experimental results suggest that hypoxia depresses CA release evoked by both cholinergic stimulation and membrane-depolarization from the isolated rat adrenal medulla, and that this inhibitory activity may be due to the result of the direct inhibition of $Ca^{++}$ influx into the chromaffin cells without any effect on the calcium mobilization from the intracellular store.

  • PDF

Vasodilating Mechanism of Dibutyryl-cAMP and Forskolin in Rabbit Aorta (Dibutyryl-cyclic AMP와 Forskolin의 혈관평활근 이완작용)

  • Ahn, Hee-Yul;Lim, Jung-Kyoo
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.127-133
    • /
    • 1990
  • Dibutyryl-cyclic AMP (db-cAMP) and forskolin were used to investigate vasodilating mechanism of cAMP in rabbit aorta. Db-cAMP and forskolin inhibited the development of contractile tension induced by norepinephrine (NE) concentration-dependently. However, high $K{^+}-induced$ contractile tension was inhibited less effectively by db-cAMP and forskolin. Db-cAMP and forskolin inhibited $^{45}Ca^{2+}$ uptake increased by NE. Forskolin seemed to inhibit $^{45}Ca^{2+}$ uptake increased by high $K{^+}$, but this inhibition was not significant statistically. Db-cAMP inhibited $Ca^{2+}-transient$ contraction by NE in $Ca^{2+}-free$ solution. In conclusion, it seems that cAMP blocks $Ca^{2+}$ influx through receptor operated $Ca^{2+}$ channels (ROCs), but that the effect of cAMP on $Ca^{2+}$ influx through voltage gated $Ca^{2+}$ channels (VGCs) is not clear in this experiment. Furthermore, cAMP is likely to inhibit calcium release from the intracellular stores.

  • PDF

Octyl Gallate Inhibits ATP-induced Intracellular Calcium Increase in PC12 Cells by Inhibiting Multiple Pathways

  • Guo, Yujie;Hong, Yi-Jae;Jang, Hyun-Jong;Kim, Myung-Jun;Rhie, Duck-Joo;Jo, Yang-Hyeok;Hahn, Sang-June;Yoon, Shin-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2010
  • Phenolic compounds affect intracellular free $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) signaling. The study examined whether the simple phenolic compound octyl gallate affects ATP-induced $Ca^{2+}$ signaling in PC12 cells using fura-2-based digital $Ca^{2+}$ imaging and whole-cell patch clamping. Treatment with ATP ($100\;{\mu}M$) for 90 s induced increases in $[Ca^{2+}]_i$ in PC12 cells. Pretreatment with octyl gallate (100 nM to $20\;{\mu}M$) for 10 min inhibited the ATP-induced $[Ca^{2+}]_i$ response in a concentration-dependent manner ($IC_{50}=2.84\;{\mu}M$). Treatment with octyl gallate ($3\;{\mu}M$) for 10 min significantly inhibited the ATP-induced response following the removal of extracellular $Ca^{2+}$ with nominally $Ca^{2+}$-free HEPES HBSS or depletion of intracellular $Ca^{2+}$ stores with thapsigargin ($1\;{\mu}M$). Treatment for 10 min with the L-type $Ca^{2+}$ channel antagonist nimodipine ($1\;{\mu}M$) significantly inhibited the ATP-induced $[Ca^{2+}]_i$ increase, and treatment with octyl gallate further inhibited the ATP-induced response. Treatment with octyl gallate significantly inhibited the $[Ca^{2+}]_i$ increase induced by 50 mM KCI. Pretreatment with protein kinase C inhibitors staurosporin (100 nM) and GF109203X (300 nM), or the tyrosine kinase inhibitor genistein ($50\;{\mu}M$) did not significantly affect the inhibitory effects of octyl gallate on the ATP-induced response. Treatment with octyl gallate markedly inhibited the ATP-induced currents. Therefore, we conclude that octyl gallate inhibits ATP-induced $[Ca^{2+}]_i$ increase in PC12 cells by inhibiting both non-selective P2X receptor-mediated influx of $Ca^{2+}$ from extracellular space and P2Y receptor-induced release of $Ca^{2+}$ from intracellular stores in protein kinase-independent manner. In addition, octyl gallate inhibits the ATP-induced $Ca^{2+}$ responses by inhibiting the secondary activation of voltage-gated $Ca^{2+}$ channels.