• Title/Summary/Keyword: Calcium precipitation

Search Result 217, Processing Time 0.035 seconds

Evaluation on the Aggressivity of Drinking Water for Corrosion Control in Water Distribution System (상수도관로의 부식 방지를 위한 수돗물의 침식성 평가)

  • Kwak, Phill-Jae;Lee, Hyun-Dong;Nam, Sang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.53-63
    • /
    • 1997
  • The corrosion problems in water distribution system are reduced by decreasing the agressivity of drinking water which is evaluated by marble test and saturation indices(LSI or CCPP etc.). Marble test is a reliable method to determine the actual saturation condition of treated water. This study was done to determined the aggressivity of tap water and the effectiveness of $Ca(OH)_2$ and NaOH dosage for corrosion control. The drinking water in Seoul were evaluated by marble test and Langelier Index(LSI) and Calcium Carbonate Precipitation Potential(CCPP). The results indicated that the drinking water in Seoul were undersaturated as Calcium Carbonate($CaCO_3$). The LSI and CCPP of the water treated with $Ca(OH)_2$ were higher than that of water treated with NaOH. Therefore, to increase the Alkalinity and Calcium Hardness for corrosion control in water distribution system, $Ca(OH)_2$ is more effective than NaOH.

  • PDF

Theoretical molecular aspects of colloidal calcium phosphate in bovine milk (우유 속에 존재하는 칼슘과 인의 복합체에 대한 이론적인 분자학적 특성)

  • Choi, Jong-Woo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.3
    • /
    • pp.459-464
    • /
    • 2011
  • A simplified model for the colloidal calcium phosphate (CCP) nanocluster was developed from an active role of phosphate in the precipitation of casein (CN)/Ca mixtures and the composition of casein micelles (CM). The possible shape of the CCP nanocluster was selected as a tetrahedron, and we estimated that 4 CN molecules were involved in crosslinking a single CCP nanocluster. Similar values were obtained for the number of CN molecules involved in stabilizing the nanocluster when the number of CNs attached onto each nanocluster surface was deduced from the composition of CM. If one phosphoserine cluster consisted of 3 phosphoserine residues, the theoretical molecular weight and volume for the nanocluster were estimated to be 4,898 g/mol and 2.88 $nm^3$, respectively. It was also shown that the position of Ca present in our model were reasonably located to accommodate the serine phosphate in CN molecule.

Application of magnesium to improve uniform distribution of precipitated minerals in 1-m column specimens

  • Putra, Heriansyah;Yasuhara, Hideaki;Kinoshita, Naoki;Hirata, Akira
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.803-813
    • /
    • 2017
  • This study discussed the possible optimization of enzyme-mediated calcite precipitation (EMCP) as a soil-improvement technique. Magnesium chloride was added to the injection solution to delay the reaction rate and to improve the homogenous distribution of precipitated minerals within soil sample. Soil specimens were prepared in 1-m PVC cylinders and treated with the obtained solutions composed of urease, urea, calcium, and magnesium chloride, and the mineral distribution within the sand specimens was examined. The effects of the precipitated minerals on the mechanical and hydraulic properties were evaluated by unconfined compressive strength (UCS) and permeability tests, respectively. The addition of magnesium was found to be effective in delaying the reaction rate by more than one hour. The uniform distribution of the precipitated minerals within a 1-m sand column was obtained when 0.1 mol/L and 0.4 mol/L of magnesium and calcium, respectively, were injected. The strength increased gradually as the mineral content was further increased. The permeability test results showed that the hydraulic conductivity was approximately constant in the presence of a 6% mineral mass. Thus, it was revealed that it is possible to control the strength of treated sand by adjusting the amount of precipitated minerals.

Physical Properties of Photosynthetic Cyanobacteria Applied Porous Concrete by CO2 Sequestration (광합성 남세균을 도포한 투수 콘크리트의 이산화탄소 고정에 의한 물성 변화)

  • Indong Jang;Namkon Lee;Jung-Jun Park;Jong-Won Kwark;Hoon Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.416-424
    • /
    • 2023
  • Concrete emits a large amount of carbon dioxide throughout its life cycle, and due to the societal demand for carbon dioxide reduction, research on storing carbon dioxide in concrete in the form of minerals is ongoing. In this study, cyanobacteria, which absorb carbon dioxide through photosynthesis and fix it as calcium carbonate, were applied to a porous concrete substrate, and the changes in the properties of the concrete substrate due to their special environmental curing condition were analyzed. The results showed that the calcium carbonate precipitation by the microorganisms was concentrated in the light-exposed surface area, and most of the precipitation occurred in the cement paste part, not in the aggregate. This microbially induced calcium carbonate precipitation enhanced the mechanical performance of the paste and improved the overall compressive strength as the curing age progressed. In addition, the increase in microbial biofilm and calcium carbonate improved the pore structure, which influenced the reduction in water permeability.

Analysis of Precipitation Chemistry at Rural Site in the Eastern Coast, Korea

  • Kang, Gong-Unn;Shin, Dae-Ywen;Kim, Hui-Kang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E1
    • /
    • pp.29-39
    • /
    • 2003
  • The 10-day interval basis measurements of precipitation samples at Yangyang, the rural and coastal area on the eastern coast of the Korea peninsula were accomplished for understanding the precipitation chemistry and the temporal variations of major ions September 1991 to February 1997. The precipitation was slightly acidic, and 37% of the samples in winter were pH less than 4.5. The concentrations of cations were found on the order $Na^+\;>\;{NH_4}^+\;>\;Ca^{2+}\;>\;Mg^{2+}\;>\;K^+$ and those of anions followed the pattern $Cl^-\;>\;{SO_4}^{2-}\;>\;{NO_3}^-$. Neglecting sea salt components, the major ions controlling precipitation chemistry were nss-${SO_4}^{2-}$ and ${NO_3}^-$ in anion and ${NH_4}^+$ and nss-$Ca^{2+}$ in cation. Concentrations of these ions were lower than those measured at urban sites in Korea, but were higher than those measured in Japan. Most of nss-${SO_4}^{2-}$ and ${NO_3}^-$ were neutralized by ammonia and calcium species, especially alkaline soil particles in spring and ammonia gas in other seasons. Considering also the annual value of [nss -${SO_4}^{2-}$]/[${NO_3}^-$] ratio of 2.62 and the neutralizing factors, ammonium sulphate compounds were dominant. Annual mean concentrations of these ions showed relatively small fluctuations, while larger seasonal variations were observed with higher levels in spring and winter. Precipitation amount, influence extent of acidic gases and alkaline particles long-range transported from China continent, and energy consumption pattern in each season might be able to explain this seasonal trend.sonal trend.

A Study on the Comparison of Chemical Components in Rainwater at Coastal and Metropolitan areas (해안지역과 도시지역 강수의 화학적 성상에 관한 연구)

  • 강공언;강병욱;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.191-197
    • /
    • 1992
  • In order to investigate the chemical components of acid precipitation at Kangwha near the Yellow Sea and Seoul in Korea, the precipitation samples were collected by wetonly precipitation sampler from February 1991 to January 1992, and pH, electric conductivity(E. C.) and major water-soluble ionic components were analyzed. Strong negative linear correlations were observed between the rainfall amount and the sum of major ionic components in $\mu eq/\ell$ at two sites. The sum of major ionic components also correlated negatively with rain intensity. The analytical results of precipitation samples at two sites were compared each other. Average values of volume-weighted pH were found to be 5.21 at Kangwha and 5.09 at Seoul. The cationic abundance($\mu eq/\ell$) in rainwater showed the general trend $NH_4^+ > Na^+ > Ca^{2+} > Mg^{2-+} > H^+ > K^+$ at Kangwah and $NH_4^+ > Ca^{2+} > Na^+ > H^+ > Mg^{2+} > K^+$ at Seoul. The anionic abundance showed the general trend $SO_4^{2-} > Cl^- > NO_3^-$ at Kangwha and $SO_4^{2-} > NO_3^- > Cl^-$ at Seoul. The concentrations of seasalt such as $Na^+ and Cl^-$ were higher at Kangwha than Seoul. The concentrations of $nss-SO_4^{2-}, nss-Cl^- and NO_3^-$ which are acid composition were higher at Seoul(96.3 $\mu eq/\ell$) than Kangwha(69.0 $\mu eq/\ell$). The contribution of seasalt to the composition of precipitation were higher at Kangwha(34.1%) than Seoul(15.7%). Ammonia and calcium species in rainwater at Kangwha and Seoul are interpreted to have 91% of neutralizing capacity of the original sulfuric and nitric acids. Provided that the precipitation acidity originates primarily from sulfate and nitrate, sulfate was found to contribute about 73-75% of the free precipitation acidity.

  • PDF

Removal of Arsenic From Closed Mine Tailings by Alkali-Leaching Method (알칼리 용출법에 의한 폐광산 광미중의 비소제거에 관한 연구)

  • 이재령;오종기;이화영;김성규;박재구
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.73-79
    • /
    • 1997
  • Removal of the Arsenic components from the closed mine tailings has been attempted by the alkali-leaching method. Two tailings collected from the Daduck and Yuchon mine which were already closed many years ago were leached with caustic soda solutions. The Arsenic components in the leach liquor resulted from the alkali treatment of tailings could be removed fairly well in the form of insoluble calcium-Arsenic compound by the precipitation with calcium chloride. As a result, the extraction of about 60~90% Arsenic from the tailings could be obtained depending on the leaching conditions and the influence of temperature and the slurry density on the extraction of Arsenic was also found to be very small at the NaOH concentration more than 0.5N. In addition, it seemed that a caustic soda solution over 0.5N NaOH could be used repeatedly for the leaching of tailings since the consumption of NaOH was not so great in a leaching of them. As far as the precipitation of Arsenic components was concerned, more than 99% of Arsenic could be precipitated within 10 minutes by the addition of 2wt% CaC12 in to the leach liquor.

  • PDF

Effect of the applied voltage of pulsed electric fields and temperature on the reduction of calcium ion concentration (고전압 펄스 전계의 인가전압과 온도가 수중 칼슘 농도 저감에 미치는 영향)

  • Kim, Jae-Hyun;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.2
    • /
    • pp.95-101
    • /
    • 2019
  • High voltage impulse(HVI) has been gained attention as an alternate technique controlling $CaCO_3$ scale formation. Investigation of key operational parameters for HVI is important, however, those had not been reported yet. In this study, the effect of temperature and applied voltage of HVI on $Ca^{2+}$ concentration was studied. As the applied voltage from 0 to 15kV and the temperature increased from 20 to $60^{\circ}C$, the $Ca^{2+}$ concentration decreased, indicating that the aqueous $Ca^{2+}$ precipitated to $CaCO_3$. The $Ca^{2+}$ concentration decreased up to 81% under the condition of 15kV and $60^{\circ}C$. Rate constant for the precipitation reaction, k was determined under different temper1ature and voltage. The reaction rate constant under the 15kV and $60^{\circ}C$ condition was evaluated to $66{\times}10^{-3}L/(mmol{\cdot}hr)$, which was 5 times greater than the k of the reaction without HVI at same temperature. The increases in k by HVI at higher temperature region(40 to $60^{\circ}C$) was much greater than at lower temperature region(20 to $40^{\circ}C$), which implies temperature is more important parameter than voltage for reducing $Ca^{2+}$ concentration at high temperature region. These results show that the HVI induction accelerates the precipitation to $CaCO_3$, particularly much faster at higher temperature.

Effect of irrigants on the color stability, solubility, and surface characteristics of calcium-silicate based cements

  • Selen Kucukkaya Eren;Sevinc Askerbeyli Ors;Hacer Aksel;Senay Canay ;Duygu Karasan
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.1
    • /
    • pp.10.1-10.11
    • /
    • 2022
  • Objectives: This study aimed to investigate the color stability, solubility, and surface characteristics of 3 calcium silicate-based cements (CSCs) after immersion in different solutions. Materials and Methods: ProRoot white mineral trioxide aggregate (MTA), Biodentine, and Endosequence Root Repair Material (ERRM) were placed in cylindrical molds and stored at 37℃ for 24 hours. Each specimen was immersed in distilled water, 5% sodium hypochlorite (NaOCl), 2% chlorhexidine, or 0.1% octenidine hydrochloride (OCT) for 24 hours. Color changes were measured with a spectrophotometer. Solubility was determined using an analytical balance with 10-5 g accuracy. The surface characteristics were analyzed using scanning electron microscopy and energy-dispersive spectroscopy. Data were analyzed using 2-way analysis of variance, the Tukey test, and the paired t-test. Results: MTA exhibited significant discoloration in contact with NaOCl (p < 0.05). White precipitation occurred on the surfaces of Biodentine and ERRM after contact with the solutions, and none of the materials presented dark brown discoloration. All materials showed significant solubility after immersion in the solutions (p < 0.05), irrespective of the solution type (p > 0.05). The surface topography and elemental composition of the samples showed different patterns of crystal formation and precipitation depending on the solution type. Conclusions: All materials presented some amount of solubility and showed crystal precipitation after contact with the solutions. Biodentine and ERRM are suitable alternatives to ProRoot MTA as they do not exhibit discoloration. The use of OCT can be considered safe for CSCs.

Formation and Preservative Effectiveness of Inorganic Substances in Wood Treated with Potassium Carbonate and Calcium Chloride (탄산칼륨과 염화칼슘을 이용한 무기질 복합화 목재 중에 있어서 무기염의 생성과 방부효력)

  • Yoon, Sun-Mi;Lee, Jong-Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.126-132
    • /
    • 2001
  • This research is carried out to investigate the formation and preservative effectiveness of inorganic substance, calcium carbonate($CaCO_3$), in wood. The specimens were prepared by the impregnation with saturated solutions of potassium carbonate($K_2CO_3$) into the wood followed by precipitation in saturated solutions of calcium chloride($CaCl_2$) for 24h, 72h and 120h, and then they were leached in instrument flowing with water for 24h. The weight percent gains of $K_2CO_3$ solution impregnated specimens reached approximately a maximum value (108.1%) by 72h precipitation in $CaCl_2$ solutions. Inorganic substances were observed to he produced in the lumina of tracheids of specimens. From these inorganic substances filling in the tracheids, characteristic X-rays of calcium(Ca-$K_{\alpha}$) were detected by energy dispersive X-ray analyzer. Moreover, it was shown from a leaching treatment that these substances could not he leached easily from the specimens. Therefore, they were could he considered to be insoluble calcium carbonates. The weight losses of the prepared specimens were hardly occurred by test fungi attacks. Thus inorganic substances in specimens can be said to have preservative effectiveness.

  • PDF