• Title/Summary/Keyword: Calcium powder

Search Result 432, Processing Time 0.028 seconds

Effects of Various Calcium Powders as Replacers for Synthetic Phosphate on the Quality Properties of Ground Pork Meat Products

  • Bae, Su Min;Cho, Min Guk;Jeong, Jong Youn
    • Food Science of Animal Resources
    • /
    • v.37 no.3
    • /
    • pp.456-463
    • /
    • 2017
  • The aim of this study was to identify the optimal and superior type of natural calcium for replacing phosphate in cooked ground pork products. To achieve this, 0.5% eggshell calcium (ESC), oyster shell calcium (OSC), marine algae calcium (MAC), or milk calcium (MC) was added to ground pork meat products. The effect of this substitution was studied by comparing the substituted products with products containing 0.3% phosphate blend (control). ESC was considered an ideal phosphate replacer for minimizing the cooking loss, which likely resulted from the increase in the pH of the product. Among the other natural calcium types, OSC treatment did not cause a significant increase in pH, but it lowered the cooking loss. CIE $L^*$ values were higher (p<0.05) in products treated with OSC or MC than the control, and lowest (p<0.05) in the products with ESC. However, products with ESC had higher (p<0.05) CIE $a^*$ and CIE $b^*$ values than the control and products treated with other powders. Compared to the control, products treated with ESC and OSC had similar substitution effects on the textural properties of the products. Therefore, the results of this study suggested that the combined use of ESC and OSC could be a potentially effective method for replacing synthetic phosphate in ground pork products.

Optimal Synthesis Conditions of Calcium Hydrogen Phosphate (인산 일수소칼슘의 최적합성조건)

  • Shin, Wha-Woo;Kim, Youn-Seol;Kim, Jun-Hea
    • YAKHAK HOEJI
    • /
    • v.42 no.2
    • /
    • pp.153-158
    • /
    • 1998
  • Calcium hydrogen phosphate was synthesized by reacting calcium chloride and sodium hydrogen phosphate solution in this study. It is well known that the particle size and yield o f calcium hydrogen phosphate produced is greatly affected by the synthetic conditions such as the reactant concentration, reaction temperature, reacting fine, mole ratio and drying temperature, etc. The purpose of this study is to investigate the optimum synthesis condition from the viewpoint of yield and sedimentation volume of the prepared calcium hydrogen phosphate powder according to a randomized complete block design proposed by G.E.P. Box and K.B. Wilson. It was found that the optimum synthetic conditions of calcium hydrogen phosphate were as follows: It was found that optirnum temperature range of reactant solutions was $28-38^{\circ}C$ and $32-42^{\circ}C$ respectively, on the viewpoint of yield and sedimentation volume. The optimum concentration range of reactant solutions was 5.5-10.0% and 6.9-7.4% respectively, on the viewpoint of yield and sedimentation volume. The optimum mole ratio of $CaCl_2$ to $Na_2HPO_4$ was in the range of 1.2-2.0 and the optimum reacting time range was 8.5-11.0 minutes. The optimum drying temperature range was $39-41^{\circ}C$ from the viewpoint of yield, but it was $39-43^{\circ}C$ on the basis of sedimentation volume. Crystallographic analysis to X-ray diffraction patterns of commercially available ecalcium hydrogen phosphate and calcium hydrogen phosphate samples prepared in this study suggested that all samples tested belonged to monoclinic crystal system characteristic of $CaHP0_4{\cdot}2H_20$ crystals.

  • PDF

A Study on the Technique to Manufacture Recycled Cement from Cementitious Powders for Complete Recycling of Concrete Structures (콘크리트 구조물의 완전순환이용을 위한 폐콘크리트계 미분말의 재생시멘트 활용 기술 연구)

  • Park, Cha-Won;An, Jae-Cheol;Gang, Byeong-Hui
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.3
    • /
    • pp.143-151
    • /
    • 2004
  • The purpose of this study is development of technique to use cementitious powder as recycle cement produced from deteriorated Concrete waste which has a large quantity of calcium carbonate. Therefore, after having theoretical consideration based on the properties of high-heated concrete and concerning about neutralization of Concrete, we analysis chemical properties of ingredients of cementitious powder. After making origin cement paste, then processing the accelarated carbonation, we consider the properties of hydration and chemical properties of cementitious powder under various temperature conditions. As a result of the thermal analysis, the $CaCO_3$ content of cementitious powder would affect decision of heat temperature to recover its hydrated ability because $CaCO_3$ content is increased when neutralization is progressed. And as a result of XRD analysis, in case of origin powder of non-neutralized paste, CaO peak is found at $700^{\circ}C$. but, heat temperature to generate CaO would increase when the content of neutralized ingredients is increased. Finally, recycle cement heated at $700^{\circ}C$ 120min. shows the best compressive strength when the content of neutralized ingredients in recycle cement is less then 50%.

Production of Titanium Powder by Electronically Mediated Reaction (EMR) (도전체 매개반응(EMR)법에 의한 Ti 분말 제조)

  • Park Il;Chu Yong Ho;Lee Chul Ro;Lee Oh Yeon
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.857-862
    • /
    • 2004
  • Production of titanium powder directly from tantalum oxides ($TiO_2$) pellet through an electronically mediated reaction (EMR) by calciothermic reduction has been investigated. Feed material ($TiO_2\;pellet$) and reductant (Ca-Ni alloy) were charged into electronically isolated locations in a molten calcium chloride ($CaCl_2$) bath at $950^{\circ}C$. The current flow through an external circuit between the feed (cathode) and reductant (anode) locations was monitored during the reduction of $TiO_2$. The current approximately 3.2A was measured during the reaction in the external circuit connecting cathode and anode location. After the reduction experiment, pure titanium powder with low nickel content was obtained even though Ca-Ni alloy was used as a reductant. These results demonstrate that titanium powder can be produced without direct physical contact between the feed and reductant. In certain experimental conditions, pure titanium powder with approximately $99.5\;mass\%$ purity was successfully obtained.

Properties of concrete incorporating sand and cement with waste marble powder

  • Ashish, Deepankar K.;Verma, Surender K.;Kumar, Ravi;Sharma, Nitisha
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.145-160
    • /
    • 2016
  • Marble is a metamorphic rock used widely in construction which increases amount of marble powder obtained from it. Marble powder is a waste product obtained from marble during its processing. Marble waste is high in calcium oxide content which is cementing property but it creates many environmental hazards too if left in environment or in water. In this research, partial replacement of cement and sand by waste marble powder (WMP) has been investigated. Seven concrete mixtures were prepared for this investigation by partially replacing cement, sand with WMP at proportions of 0%, 10% and 15% by weight separately and in combined form. To determine compressive strength, flexural strength and split tensile strength of concrete made with waste marble powder, the samples at the curing ages of 7, 28 and 90 days was recorded. Different tests of durability were applied on samples like ultrasonic pulse wave test, absorption and sorptivity. For further investigation all the results were compared and noticed that WMP has shown good results and enhancing mechanical properties of concrete mix on partially replacing with sand and cement in set proportions. Moreover, it will solve the problem of environmental health hazard.

Studies on the Manufacture and Quality Characteristics of Bread made with Capsosiphon fulvecense Powder (매생이 분말을 첨가한 식빵 제조 및 그 특성에 관한 연구)

  • HONG, Seok-Cheel;CHOE, Sun-Nam
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.1
    • /
    • pp.28-42
    • /
    • 2009
  • For the utilization of seaweed (Capsosiphon fulvecense, algae) powder as an ingredient of bread, the quality of bread made with different concentration of seaweed powder was evaluated with physical and sensory properties. The powdered algae was shown to have crude protein content at 25.38%. The major minerals were identified with calcium with 8.38 g/kg, potassium with 9.5 g/kg, and magnesium with 5.6 g/kg, which comprised to 19.08% of total mineral content. Amount of essential amino acids content was estimated to be 835 mg/100 g. Content of essential fatty acid was found to be 27,25% of total fatty acids. For the preparation of bread added with seaweed powder, the addition ratio of seaweed was set at 3, 5 and 7% versus wheat flour with same ratio of other ingredients. L value, lightness of bread, was proportionally reduced with increse of seaweed powder. However, b value, yellowness, was increased with the addition of the seaweed powder. Adhesiveness, cohesiveness, and springiness of the bread were reduced with the addition of the seaweed powder, however, hardness of the bread was vice versa. Texture, flavor, color, and overall acceptance of the bread added seaweed powder were shown up significant differences among all tested groups (P < 0.001), that is, more seaweed powder showed less favorable texture, flavor, color, and overall acceptance. Although the bread added with seaweed powder showed a less preference compared to control group, the bread with 3% of seaweed powder was favorable to other test groups, which might have a potential for the commercialization of functional breads using seaweeds.

In vitro biocompatibility of a cement compositecontaining poly ($\varepsilon$-caprolactonemicrosphere) (PCL)

  • Jyoti, Md. Anirban;Min, Young-Ki;Lee, Byong-Taek;Song, Ho-Yeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.42.1-42.1
    • /
    • 2009
  • In recent years, it has been tried to develop the efficacy and bioactivity of Calcium Phosphate cements(CPC) as injectable bone substitute (IBS) by reinforcing them through varying the amount in its compositions and relative concentrations or adding other additives. In this study, the biocompatibility of are inforced Calcium Phosphate-Calcium Sulfate injectable bone substitute (IBS)containing poly ($\varepsilon$-caprolactone)PCL microspheres was evaluated which consisted of solution chitosan and Na-citrate as liquid phase and tetra calcium phosphate (TTCP), dicalciumphosphate anhydrous (DCPA) powder as the solid phase. The in vitrobiocompatibility of the IBS was done using MTT assay and Cellular adhesion and spreading studies. The in vitro experiments with simulated body fluid (SBF) confirmed the formation of apatite on sample surface after 7 and 14 days of incubation in SBF. SEM images for one cell morphologies showed that the cellular attachment was good. MG-63 cells were found to maintain their phenotype on samples and SEM micrograph confirmed that cellular attachment was well. In vitro cytotoxicity tests by an extract dilution method showed that the IBS was cytocompatible for fibroblast L-929.

  • PDF

Quality Improvement of Heat-Induced Surimi Gel using Calcium Powder of Cuttle, Sepia esculents Bone Treated with Acetic Acid (아세트산 처리 갑오징어(Sepia esculenta)갑을 이용한 어묵의 품질 개선)

  • KIM Jin-Soo;CHO Moon-Lae;HEU Min-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.3
    • /
    • pp.198-203
    • /
    • 2003
  • Heat-induced surimi gels were prepared using various concentration of ATC as a additives and calcium agent. Regardless of various concentration of ATC, there were no difference the moisture $(80.4-81.2\%)\;and\;crude\;ash\;(1.4-1.\5%)$ contents. The pH of heat-induced surimi gels were decreased 7.16 to 7.04 depend on increasing ATC concentration. The whiteness, breaking force and gel strength of $0.09\%$surimi gel were improved significantly difference (p<0.05). Sensory evaluation on texture and whiteness were also similar to determination by color and texture meters. In mineral content of heat-induced surimi gel calcium content was increased 26 to 54 mg/100g depend on increasing ATC concentration, while phosphorus content was not change. The optimal concentration of ATC for preparation of high quality heat-induced surimi gel was $0.09\%$. The shelf-life of heat-induced surimi gel did not extend by addition of $0.09\%$ ATC.

AN INFRA-RED SPECTROPHOTOMETRIC STUDY OF THE REACTION IN CALCIUM HYDROXIDE DENTAL CEMENT (치과용(齒科用) 수산화(水酸化)칼슘 시멘트의 경화반응(硬化反應)에 관(關)한 적외선분석학적(赤外線分析學的) 연구(硏究))

  • Kim, Choong-Jong;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.10 no.1
    • /
    • pp.71-83
    • /
    • 1984
  • The purpose of this study was to evaluate the transmission spectrum of the set calcium hydroxide dental cement (Dycal, L.D. Caulk Co. Milford, Del.) Cement was prepared for A T R spectra at a low powder-to-liquid ratio of 3.0gm/ml in order to retard the reaction and facilitate the manipulation of loading the cement into the cell. Spectra were recorded on an I R Spectrophotometer (MX-1, FT) at an agle of incidence of 55. The A T R cell was a RIIc Model TR5 with a hemisperical KRS-5 (Thallium-Bromide-Iodide). A spectrum was recorded within 3 minutes. Further spectra were recorded after 5,10,30 minutes and 1,5,24, 72 hours. The results were as follows; 1. The setting reaction between acid paste and base past would take place fastly within 10 minutes after mix, and that would be slow until 72 hours after mix. 2. In the set cements, some methyl salicylate and calcium hydroxide remained unreacted until 72 hours after mix. 3. The setting reaction and the reaction rate occuring at the surface and in the bulk cements were similar. 4. The chelates were bound together between calcium hydroxide and methyl salicylate.

  • PDF

Effect of Calcium Cyanamide Soil Fumigation on Sterilization of Rhizoctonia solani, Pythium sp., Soil Microbes and Plant Seed (석회질소 토양훈증의 라이족토니아 소라니, 피시움, 토양미생물과 씨앗의 사멸효과)

  • Lee, Byung-Dae;Park, Roan
    • Journal of Ginseng Research
    • /
    • v.33 no.2
    • /
    • pp.139-142
    • /
    • 2009
  • The effect of calcium cyanamide (China-made) soil fumigation on the growth of the ginseng pathogen Rhizoctonia, Pythium), soil microbes, and seed germination of lettuce and radish was investigated. At twice the recommended level (2S0-ppm $CaCN_2$), the growth of Rhizoctonia and Pythium, and the seed germination, were not inhibited. Rather, the effective level was 10,000 ppm. The powder form was more effective than the granular form in inhibiting pathogen growth and seed germination. The lettuce seed was also more sensitive than the radish seed. Calcium cyanamide appearedto decrease the fungi population and to increase Actinomycetes in the soil.