• 제목/요약/키워드: Calcium ion ($Ca^{2+}$)

검색결과 270건 처리시간 0.028초

Nootkatol prevents ultraviolet radiation-induced photoaging via ORAI1 and TRPV1 inhibition in melanocytes and keratinocytes

  • Woo, Joo Han;Nam, Da Yeong;Kim, Hyun Jong;Hong, Phan Thi Lam;Kim, Woo Kyung;Nam, Joo Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권1호
    • /
    • pp.87-94
    • /
    • 2021
  • Skin photoaging occurs due to chronic exposure to solar ultraviolet radiation (UV), the main factor contributing to extrinsic skin aging. Clinical signs of photoaging include the formation of deep, coarse skin wrinkles and hyperpigmentation. Although melanogenesis and skin wrinkling occur in different skin cells and have different underlying mechanisms, their initiation involves intracellular calcium signaling via calcium ion channels. The ORAI1 channel initiates melanogenesis in melanocytes, and the TRPV1 channel initiates MMP-1 production in keratinocytes in response to UV stimulation. We aimed to develop a drug that may simultaneously inhibit ORAI1 and TRPV1 activity to help prevent photoaging. We synthesized nootkatol, a chemical derivative of valencene. TRPV1 and ORAI1 activities were measured using the whole-cell patch-clamp technique. Intracellular calcium concentration [Ca2+]i was measured using calcium-sensitive fluorescent dye (Fura-2 AM). UV-induced melanin formation and MMP-1 production were quantified in B16F10 melanoma cells and HaCaT cells, respectively. Our results indicate that nootkatol (90 μM) reduced TRPV1 current by 94% ± 2% at -60 mV and ORAI1 current by 97% ± 1% at -120 mV. Intracellular calcium signaling was significantly inhibited by nootkatol in response to ORAI1 activation in human primary melanocytes (51.6% ± 0.98% at 100 μM). Additionally, UV-induced melanin synthesis was reduced by 76.38% ± 5.90% in B16F10 melanoma cells, and UV-induced MMP-1 production was reduced by 59.33% ± 1.49% in HaCaT cells. In conclusion, nootkatol inhibits both TRPV1 and ORAI1 to prevent photoaging, and targeting ion channels may be a promising strategy for preventing photoaging.

Calmodulin 단백질의 형태변화를 이용한 광섬유 형광센서에 의한 $Ca^{2+}$의 정량 (Determination of $Ca^{2+}$ by Fiber Optic Fluorosensor Based on the Conformational Change of the Protein Calmodulin)

  • 이창섭;양승태
    • 분석과학
    • /
    • 제8권3호
    • /
    • pp.221-227
    • /
    • 1995
  • $Ca^{2+}$에 대하여 특이한 선택성을 보이는 광섬유형광센서에 대하여 연구하였다. 이 센서는 $Ca^{2+}$과 형광성 킬레이트를 형성하는 단백질 Calmodulin(CaM)을 사용하였으며, 두 갈래로 된 광섬유 다발의 끝면에 플루오르세인 이소티오시아네이트로써 형광 표지된 Calmodulin(FCaM)으로 만든 용액을 투석막 안에 넣어서 제작하였다. 이 센서의 감응 메카니즘은 FCaM이 $Ca^{2+}$과 결합하여 킬레이트를 형성할 때에 나타나는 형광 스펙트럼의 이동 현상을 바탕으로 한다. CaM은 $Ca^{2+}$과 결합할 때에 형태변화를 일으키며, 이로 인해 유발되는 FCaM의 형광세기 변화로써 농도를 결정하였다. 광전자증배관으로 형광의 세기를 측정하여 $Ca^{2+}$에 대한 검정곡선을 작성하였으며, 센서의 $Ca^{2+}$에 대한 검출한계와 $Mg^{2+}$, $Eu^{3+}$, $La^{3+}$들에 의한 방해효과, 감응 시간 및 수명을 조사하였다.

  • PDF

Mechanosensitive ion channels in apoptosis and ferroptosis: focusing on the role of Piezo1

  • Yong-Jae Kim;Jeongeun Hyun
    • BMB Reports
    • /
    • 제56권3호
    • /
    • pp.145-152
    • /
    • 2023
  • Mechanosensitive ion channels sense mechanical stimuli applied directly to the cellular membranes or indirectly through their tethered components, provoking cellular mechanoresponses. Among others, Piezo1 mechanosensitive ion channel is a relatively novel Ca2+-permeable channel that is primarily present in non-sensory tissues. Recent studies have demonstrated that Piezo1 plays an important role in Ca2+-dependent cell death, including apoptosis and ferroptosis, in the presence of mechanical stimuli. It has also been proven that cancer cells are sensitive to mechanical stresses due to higher expression levels of Piezo1 compared to normal cells. In this review, we discuss Piezo1-mediated cell death mechanisms and therapeutic strategies to inhibit or induce cell death by modulating the activity of Piezo1 with pharmacological drugs or mechanical perturbations induced by stretch and ultrasound.

칼슘 섭취 후 타액 내 칼슘 및 마그네슘 농도가 치아우식활성도에 미치는 영향 (The effect of calcium and magnesium concentration in saliva on dental caries activity after consuming calcium)

  • 박정은;황수연;김설악
    • 한국치위생학회지
    • /
    • 제17권2호
    • /
    • pp.283-294
    • /
    • 2017
  • Objectives: The purpose of the study was to investigate the effect of calcium concentration in saliva on dental caries activity after consuming calcium. Methods: A total of 59 adult women aged 20 to 40 years were surveyed for calcium intake. The daily average calcium intake was analyzed through dietary records of the subjects. The subjects were divided into two groups based on daily average calcium intake. Salivary pH and concentrations of minerals in the saliva were obtained from A group and B group. Calcium ($Ca^{2+}$) and magnesium ($Mg^{2+}$) concentrations in saliva were measured by HPLC-Ion chromatography using 15 mM sulfuric acid. The dental caries activity test was quantified by salivary buffer capacity test and plaque pH test. Results: The mean $Ca^{2+}$ concentrations of A group was $12.75{\mu}g/m$, the mean $Ca^{2+}$ concentrations in the B group was $16.30{\mu}g/mL$ (p<0.05) and respectively, $Mg^{2+}$ concentrations were found to be $0.48{\mu}g/mL$ and $0.51{\mu}g/mL$. Calcium intake and calcium concentration in saliva showed a significant correlation (r=0.380). Conclusions: The mean $Ca^{2+}$ concentrations in saliva was higher in the high calcium intake group. Therefore, calcium intake in saliva was correlated with dental caries.

SURFACE ANALYSES OF TITANIUM SUBSTRATE MODIFIED BY ANODIZATION AND NANOSCALE Ca-P DEPOSITION

  • Lee, Joung-Min;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo
    • 대한치과보철학회지
    • /
    • 제45권6호
    • /
    • pp.795-804
    • /
    • 2007
  • Statement of problem. Nano-scale calcium-phosphate coating on the anodizing titanium surface using ion beam-assisted deposition (IBAD) has been recently introduced to improve the early osseointegration. However, not much is known about their surface characteristics that have influence on tissue-implant interaction. Purpose. This study was aimed to investigate microtopography, surface roughness, surface composition, and wettability of the titanium surface modified by the anodic oxidation and calcium phosphate coating using IBAD. Material and methods. Commercially pure titanium disks were used as substrates. The experiment was composed of four groups. Group MA surfaces represented machined surface. Group AN was anodized surface. Group CaP/AN was anodic oxidized and calcium phosphate coated surfaces. Group SLA surfaces were sandblasted and acid etched surfaces. The prepared titanium discs were examined as follows. The surface morphology of the discs was examined using SEM. The surface roughness was measured by a confocal laser scanning microscope. Phase components were analyzed using thin-film x-ray diffraction. Wettability analyses were performed by contact angle measurement with distilled water, formamide, bromonaphtalene and surface free energy calculation. Results. (1) The four groups showed specific microtopography respectively. Anodized and calcium phosphate coated specimens showed multiple micropores and tiny homogeneously distributed crystalline particles. (2) The order of surface roughness values were, from the lowest to the highest, machined group, anodized group, anodized and calcium phosphate deposited group, and sandblasted and acid etched group. (3) Anodized and calcium phosphate deposited group was found to have titanium and titanium anatase oxides and exhibited calcium phosphorous crystalline structures. (4) Surface wettability was increased in the order of calcium phosphate deposited group, machined group, anodized group, sandblasted and acid etched group. Conclusion. After ion beam-assisted deposition on anodized titanium, the microporous structure remained on the surface and many small calcium phosphorous crystals were formed on the porous surface. Nanoscale calcium phosphorous deposition induced roughness on the microporous surface but hydrophobicity was increased.

$Ca(OH)_2\;및 \;Na_2CO_3$수용액의 균일침전 반응에 의한 아라고나이트 침강성 탄산 칼슘의 합성 (Synthesis of aragonite precipitated calcium carbonate by homogeneous precipitate reaction of $Ca(OH)_2\;and Na_2CO_3$)

  • 박진구;박현서;안지환;김환;박찬훈
    • 한국결정성장학회지
    • /
    • 제14권3호
    • /
    • pp.110-114
    • /
    • 2004
  • 반응온도 $75^{\circ}C$에서 $Ca(OH)_2$ slurry 및 NaOH의 혼합용액에 $Na_2CO_3$ 수용액의 농도 및 첨가방법을 변화시키면서 아라고나이트 침강성 탄산칼슘의 생성거동을 관찰하였다. 이 반응에서 $Na^+$ 이온은 탄산칼슘 격자내의 $Ca^{2+}$ 이온 자리에 치환되어 칼사이트의 성장을 지연시키고, 특정방향으로의 결정성장이 진행되어 침상형 아라고나이트의 생성을 유리하게 하는 것을 알 수 있었다. 또한, $CO_3^{2-}$ 이온농도 조절에 의한 반응속도의 감소는 균일침전반응을 유도하고, $Na^+$ 이온의 치환능력을 증대시켜 아라고나이트의 생성 및 성장을 촉진하는 것으로 판단되었다.

THE NEW FINDING OF A LIGHT DEPENDENT $Ca^{2+}$ CHANNEL AND $Na^+-Ca^{2+}$ EXCHANGER IN THE VERTEBRATE RETINA (II)

  • Kim, Yun-Sook;Jung, Hyuk;Park, Chang-Suck;Woo, Suk-Hyang;Kim, Hyun-Jung;Kim, You-Young
    • Journal of Photoscience
    • /
    • 제3권3호
    • /
    • pp.133-136
    • /
    • 1996
  • Calcium modulates the activity of guanylate cyclase and plays a key role in dark and light adaptation in the visual system. We have measured the Ca$^{2+}$, K$^+$ and Na$^+$ concentration in dark and light adapted bullfrog's (Rana catesbeiana) vitreous humor by using the atomic absorption spectrophotometer. The calcium concentration of the light adapted bullfrog's vitreous humor was higher than that of the dark adapted bullfrog's vitreous humor. This means that ion activity between the photoreceptor and vitreous humor side is light dependent and we have found that a Ca$^{2+}$ channel and Na$^+$ - Ca$^{2+}$ exchanger exist in the vitreous humor.

  • PDF

LIGHT DEPENDENT CHANNELS AND EXCHANGER IN THE INTERNAL LIMITING MEMBRANE OF VERTEBRATE EYE

  • Hyuk Jung;Kim, You-Young
    • Journal of Photoscience
    • /
    • 제6권2호
    • /
    • pp.77-83
    • /
    • 1999
  • Calcium has a variety of functions in neuron and muscle cells and blood clotting, especially in the visual system where dark adapted rods cotransport with Na$\^$+/ into the cell. An influx of Ca$\^$++/ flows out of the cell through the Na$\^$+/-Ca$\^$++/ exchanger. By using a modified Using chamber in order to bring in vivo environment close, we have known that Ca$\^$++/ blocks the activity of guanylate cyclase, in consequence, having an effect on the amplitude of electroretinogram (ERG). We have measured the Ca$\^$++/, K$\^$+/, and Na$\^$+/ concentration in dark and light adapted bullfrog's (Rana catesbeiana) vitreous humor. The calcium concentration of the light adapted bullfrog's vitreous humor was higher than that of the dark adapted bullfrog's vitreous humor This means that ion activity between the photoreceptor and vitreous humor side is light dependent and we have found that a Ca$\^$++/ channel and Ca$\^$++/K$\^$+/ exchanger exist in the vitreous humor side. Taken together permeability of Ca$\^$++/, K$\^$+/ and K$\^$+/ ion internal limiting membrane faced in the vitreous humor side has light-dependent activity during the illumination.

  • PDF

Consensus channelome of dinoflagellates revealed by transcriptomic analysis sheds light on their physiology

  • Pozdnyakov, Ilya;Matantseva, Olga;Skarlato, Sergei
    • ALGAE
    • /
    • 제36권4호
    • /
    • pp.315-326
    • /
    • 2021
  • Ion channels are membrane protein complexes mediating passive ion flux across the cell membranes. Every organism has a certain set of ion channels that define its physiology. Dinoflagellates are ecologically important microorganisms characterized by effective physiological adaptability, which backs up their massive proliferations that often result in harmful blooms (red tides). In this study, we used a bioinformatics approach to identify homologs of known ion channels that belong to 36 ion channel families. We demonstrated that the versatility of the dinoflagellate physiology is underpinned by a high diversity of ion channels including homologs of animal and plant proteins, as well as channels unique to protists. The analysis of 27 transcriptomes allowed reconstructing a consensus ion channel repertoire (channelome) of dinoflagellates including the members of 31 ion channel families: inwardly-rectifying potassium channels, two-pore domain potassium channels, voltage-gated potassium channels (Kv), tandem Kv, cyclic nucleotide-binding domain-containing channels (CNBD), tandem CNBD, eukaryotic ionotropic glutamate receptors, large-conductance calcium-activated potassium channels, intermediate/small-conductance calcium-activated potassium channels, eukaryotic single-domain voltage-gated cation channels, transient receptor potential channels, two-pore domain calcium channels, four-domain voltage-gated cation channels, cation and anion Cys-loop receptors, small-conductivity mechanosensitive channels, large-conductivity mechanosensitive channels, voltage-gated proton channels, inositole-1,4,5-trisphosphate receptors, slow anion channels, aluminum-activated malate transporters and quick anion channels, mitochondrial calcium uniporters, voltage-dependent anion channels, vesicular chloride channels, ionotropic purinergic receptors, animal volage-insensitive cation channels, channelrhodopsins, bestrophins, voltage-gated chloride channels H+/Cl- exchangers, plant calcium-permeable mechanosensitive channels, and trimeric intracellular cation channels. Overall, dinoflagellates represent cells able to respond to physical and chemical stimuli utilizing a wide range of G-protein coupled receptors- and Ca2+-dependent signaling pathways. The applied approach not only shed light on the ion channel set in dinoflagellates, but also provided the information on possible molecular mechanisms underlying vital cellular processes dependent on the ion transport.

Calcium-Alginate-Chitosan의 스트론튬 이온 흡착 거동 (Adsorption Behavior of Sr Ion on Calcium-Alginate-Chitosan)

  • Lan, Dong;Bing, Deng;Lanlan, Ding;Qiong, Cheng;Yong, Yang;Yang, Du
    • 폴리머
    • /
    • 제38권5호
    • /
    • pp.557-565
    • /
    • 2014
  • Sodium alginate and chitosan are added to a $CaCl_2$ solution to prepare calcium-alginate-chitosan and calciumalginate gels. After dehydration through stoving, two types of adsorbent particles are obtained. The adsorption process of the particles obtained for low concentrations of $Sr^{2+}$ satisfies a second-order kinetic equation and the Freundlich adsorption model. The thermodynamic behaviors of the particles indicate that adsorption occurs via a spontaneous physical process. XPS pattern analysis is used to demonstrate the adsorption of $Sr^{2+}$ by calcium alginate and chitosan. By building an interaction model of the molecules of chitosan and alginate with $Ca^{2+}$ and $Sr^{2+}$ to calculate energy parameters, Fukui index, Mulliken charge, and Mulliken population, adsorption of $Sr^{2+}$ on the molecular chains of chitosan as well as the boundary of calcium-alginate-chitosan is observed to show weak stability; by contrast, adsorption between molecular chains is high.