• Title/Summary/Keyword: Calcium hydroxide

Search Result 512, Processing Time 0.022 seconds

Antimicrobial effect of calcium hydroxide as an intracanal medicament in root canal treatment: a literature review - Part II. in vivo studies

  • Kim, Dohyun;Kim, Euiseong
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.2
    • /
    • pp.97-103
    • /
    • 2015
  • The first part of this study reviewed the characteristics of calcium hydroxide ($Ca(OH)_2$) and summarized the results of in vitro studies related to its antimicrobial effects. The second part of this review covers in vivo studies including human clinical studies and animal studies. The use of $Ca(OH)_2$ as an intracanal medicament represented better histological results in animal studies. However, human clinical studies showed limited antimicrobial effects that microorganisms were reduced but not eliminated through the treatment, and that some species had resistance to $Ca(OH)_2$. Most of clinical outcome studies supported that there is no improvement in healing of periapical lesions when $Ca(OH)_2$ was applied between appointments. Further studies are required for the antimicrobial effects of $Ca(OH)_2$, and search for the ideal material and technique to completely clean infected root canals should be continued.

Antimicrobial effect of calcium hydroxide as an intracanal medicament in root canal treatment: a literature review - Part I. In vitro studies

  • Kim, Dohyun;Kim, Euiseong
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.241-252
    • /
    • 2014
  • The goal of endodontic treatment is the prevention and control of pulpal and periradicular infections. Calcium hydroxide ($Ca(OH)_2$) has been widely used in endodontics as an intracanal medicament to eliminate the remaining microorganisms after chemomechanical preparation. The purpose of this article is to review the antimicrobial properties of $Ca(OH)_2$ as an intracanal medicament in root canal treatment. The first part of this review details the characteristics of $Ca(OH)_2$ and summarizes the results of in vitro studies related to its antimicrobial effect. The antimicrobial effect of $Ca(OH)_2$ results from the release of hydroxyl ions when it comes into contact with aqueous fluids. $Ca(OH)_2$ has a wide range of antimicrobial effects against common endodontic pathogens, but is less effective against Enterococcus faecalis and Candida albicans. The addition of vehicles or other agents might contribute to the antimicrobial effect of $Ca(OH)_2$.

Effect of calcium hydroxide on inflammatory root resorption and ankylosis in replanted teeth compared with other intracanal materials: a review

  • Jahromi, Maryam Zare;Kalantar Motamedi, Mahmood Reza
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.3
    • /
    • pp.32.1-32.13
    • /
    • 2019
  • Calcium hydroxide (CH) is the gold-standard intracanal dressing for teeth subjected to traumatic avulsion. A common complication after the replantation of avulsed teeth is root resorption (RR). The current review was conducted to compare the effect of CH with that of other intracanal medications and filling materials on inflammatory RR and replacement RR (ankylosis) in replanted teeth. The PubMed and Scopus databases were searched through June 2018 using specific keywords related to the title of the present article. The materials that were compared to CH were in 2 categories: 1) mineral trioxide aggregate (MTA) and endodontic sealers as permanent filling materials for single-visit treatment, and 2) Ledermix, bisphosphonates, acetazolamide, indomethacin, gallium nitrate, and enamel matrix-derived protein (Emdogain) as intracanal medicaments for multiple-visit management of avulsed teeth prior to the final obturation. MTA can be used as a single-visit root filling material; however, there are limited data on its efficacy due to a lack of clinical trials. Ledermix and acetazolamide were comparable to CH in reducing RR. Emdogain seems to be an interesting material, but the data supporting its use as an intracanal medication remain very limited. The conclusions drawn in this study were limited by the insufficiency of clinical trials.

Development of Non-Sintered Ceramic Containing Basalt Powder (현무암 석분을 혼입한 비소성 세라믹의 개발)

  • Kim, Gui-Shik;Kim, Jung-Yun;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.93-99
    • /
    • 2014
  • The purpose of this paper is to manufacture the non-sintered ceramic used lime and industrial waste. The used materials were basalt powder sludge, calcium hydroxide(Ca(OH)2) and additives such as calcium stearate and $TiO_2$. The mixing ratios between Ca(OH)2 and sludge were 5:5, 6:4 and 8:2, respectively. The ceramic forms were pressured by 100, 200 and 300 bar and cured in 14% CO2 for 12 days. The behaviors of compressive strength, specific gravity, water absorption and pH of ceramic form were investigated. The results were compressive strength of over 36 MPa, water absorption of over 8.8%, pH value of over 12.3. And these results satisfied GR F 4006 and 4031 standard.

Formation and Crystallization of Calcium Carbonate in $C_2H_5OH-Ca(OH)_2-CO_2$ System by Ceramic Bubble Plate Reactor. (Ceramic Bubble Plate를 이용한 $C_2H_5OH-Ca(OH)_2-CO_2$계의 탄산칼슘 생성 및 결정화 연구)

  • Ahn, Ji-Whan;Park, Chan-Hoon
    • Resources Recycling
    • /
    • v.5 no.3
    • /
    • pp.56-64
    • /
    • 1996
  • C,H,OH system is widely used for producing synthetic beverages and pharmaceuticals. Calcium hydroxide suspension was used to callhol the morphology of calcium carbonate, and the charactenstics of the formahan and crystsllizatian of calcium cilrbonate by adding ethylenc glycol were determined A reaclor was made with attaching a ceramic bubble plate, and lhe eleclrical conductivity was continously monitored during the rcaction with CO, gas. A part of the suspension was separated and powdered at the transition point. XRD and electron microscopic observation showed that the intermedmte and final products were vilterite, ;~r;lganite and calcite. In this study, the volumc of the ethylene glycol added to CH,OH was fixed a1 10 vol\ulcornerh. The valumc of the suspension was 500 ml, and the changes oi characteristics were shdied along with variims cnntents(l0-50 g) of calcium hydroxide. Except m the case of 10 g of calcium hydroxide at the crystallization stagc, all of products showed gelation. Tne marc the calcium hydroxide the shorter the formation time. Alsa. the farmalion of spherical valcrile ivas obsemcd when 30 g Ca(OH), was added. Tne vaterite(a compound material) can bc synthesised under alnbienl pressure and lempcmhre m a C,H,OH system by morphology control. Even though the vateritc was meta-stable phasc and could bc changed to calcitc easily, the stable and spherical vateritc was observed by using G5 glass fillers and vacuum dricrs.

  • PDF

Synthesis of calcium phosphates from abalone shells via precipitation (전복패각을 침전법의 원료로 이용한 calcium phosphates의 합성)

  • Moon, Sung Wook;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.4
    • /
    • pp.143-149
    • /
    • 2020
  • Calcium phosphates recognized as important bio-materials have been successfully synthesized by simple precipitation using waste abalone shells, which are rich mineral sources of calcium. Calcium hydroxide (Ca(OH)2) originated from abalone shells was used as calcium source (precursor) for the preparation. Synthesis of calcium phosphates was performed by reacting calcium hydroxide with phosphoric acid (H3PO4) in aqueous solution. The initial precursor Ca/P ratios were adjusted to 1.50, 1.59 and 1.67, and the effect of the composition and the heat treatment on the synthesized powders and sintered bodies was investigated. The phases of the sintered ceramics prepared at 1150℃ were hydroxyapatite (HAp), β-tricalcium phosphate (β-TCP), and biphasic phosphate (HAp with β-TCP)), which were determined by the initial precursor Ca/P ratios. The results demonstrate the possibility for the synthesis of high value-added calcium phosphates from economical starting materials with low cost and high availability.

ENDODONTIC TREATMENT WITH CALCIUM HYDROXIDE OF REPLANTED TOOTH : A CASE REPORT (재식한 치아에서 수산화 칼슘을 사용한 근관치료)

  • Moon, Sang-Hee;Kim, Wang-Kwen;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.1
    • /
    • pp.96-102
    • /
    • 1999
  • Tooth avusion implies total displacement of teeth out of its socket. Its frequency range from 0.5 to 16% of traumatic injuries. Replantation procedure is used for the treatment of avulsed tooth. However, its major complications are pulp necrosis, inflammatory root resorption and replacement root resorption. This paper describes 10 years and 2 months old male patient whose both maxillary central incisors were avulsed due to fall-down with slightly underdeveloped root apices. Teeth were replanted 2 hours after accident. Right central incisor's pulp tissues were extirpated and filled with $Vitapex^{(R)}$(calcium hydroxide) at 3-4 weeks after replantation, but left central incisor was filled at 8-9 weeks. Right central incisor showed little inflammatory resorption in apical portion, whereas left central incisor showed severe root resorption. During 18 months' follow-up period, left central incisor showed slightly ankylosis while right central incisor did not. Based upon the above-mentioned results, the following conclusions can be drawn: 1. Inflammatory resorption could be suppressed by endodontic treatment with calcium hydroxide. 2. When apex formation is doubted in replanted tooth due to avulsion, early endodontic treatment with calcium hydroxide seems to act positively for better prognosis.

  • PDF

Material Property Evaluation for UFFA Rapid Setting Concrete including Calcium Hydroxide (수산화칼슘을 첨가한 UFFA 초속경 콘크리트의 물성특성 평가)

  • Jeon, Sung-Il;Nam, Jeong-Hee;An, Ji-Hwan;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.189-198
    • /
    • 2008
  • Generally, UFF A(Ultra Fine Fly Ash) has merit that advances a greater concrete workability and activates a greater pozzolanic reaction than common fly ash due to its ultra fine particle size. These properties enhance concrete durability by reducing permeability and increasing resistance of alkali silica reaction(ASR) and sulfate attack, etc. Due to these reasons, UFFA can be used in a rapid setting concrete. The purpose of this study is to develop and evaluate the rapid setting concrete with UFF A as a repair material for early-opening-to-traffic. In previous studies, if only UFFA is added to the rapid setting concrete mixture, pozzolanic reaction doesn't happen actively. Therefore, in this study, the chemical and physical tests were performed for rapid setting concrete with UFFA including calcium hydroxide and the activity of pozzolanic reaction was evaluated. Finally, the effectiveness of this mixture on enhancing concrete durability was investigated. As results, adding UFF A decreased the water/cement ratio of concrete, and compensated the reduced portion of the early strength of concrete. Also, rapid setting concrete with UFFA including calcium hydroxide activated a greater pozzolanic reaction than normal-UFF A concrete. As calcium hydroxide increases, electrical indication of concrete's ability to resist chloride ion penetration is promoted significantly.

  • PDF

A Study on the Strength Property of Recycled Fine Aggregate (Wet Type) Mortar with Blast Furnace Slag (고로슬래그를 사용한 습식 순환 잔골재 모르타르의 강도 특성에 관한 연구)

  • Shim, Jong-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.153-160
    • /
    • 2010
  • This study aims to obtain technical data for improvement of utilization of Blast Furnace Slag(BFS), recycled aggregate in the future by complementing fundamental problems of BFS such as manifestation of initial strength and excessive alkali quantity as well as weakness of recycled fine aggregate through manufacturing of recycled fine aggregate mortar using BFS. The recycled aggregate includes the cement paste hardened as the surface and the type of the aggregate, which contains plenty of calcium hydroxide($Ca(OH)_2$) as well as the unhydrated cement. Accordingly, the objectives of this study are to inspect the manufacturing the recycled fine aggregate mortar used with blast furnace slag, to consider the effects of the recycled aggregate on the strength development of ground granulated blast furnace slag, and then to acquire the technical data to take into consideration the further usages of the recycled aggregate and blast furnace slag. In eluted ions from recycled aggregate, it showed that there were natrium($Na^+$) and kalium($K^+$), expected to be flown out of unhydrated cement, as well as calcium hydroxide($Ca(OH)_2$). Application of this water to mix cement mortar with ground granulated blast furnace slag was observed to expedite hydration as calcium hydroxide($Ca(OH)_2$) and unhydrated cement component were expressed to give stimuli effects on ground granulated blast furnace slag. The results of the experiment show that the recycled aggregate mixed with blast furnace slag has comparatively higher hydration activity in 7 day than the mortar not mixed with one in 3 day mortar does, causing the calcium hydroxide in the recycled fine aggregate to work on as a stimulus to the hydration of ground granulated blast furnace slag.

Removal of Fluoride Ions from Electronic Industrial Wastewater Using Lime Stone Slurry (초미분말 석회석 현탁액을 이용한 전자산업 폐수 불소이온 제거연구)

  • Park, Hyeon Soo;Park, Yeon Soo;Jung, Goo Ill;Kim, Jae Woo;Jo, Young Min
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.258-263
    • /
    • 2018
  • This study attempted to utilize ultrafine precipitated calcium carbonate for fluoride removal from the wastewater of electronics industries. An average particle size of the calcium carbonate was $0.96{\mu}m$, and pH of the aqueous slurry was 10 with 70% in mass. The suspension solution showed approximately 2 mL/hr of the sedimentation rate. The present calcium carbonate solution could be comparable to the conventional aqueous calcium source, $Ca(OH)_2$, for the neutralization and removal of fluoride ions. Depending on the amount of an additional alkali source, less amounts of test Ca-source slurries were required to reach the solution pH of 7.0 than that of using the aqueous calcium hydroxide. It was also found from XRD analysis that more calcium fluoride precipitates were formed by the addition of calcium carbonate solution rather than that of calcium hydroxide. In addition, Minteq equilibrium modelling estimated various ion complexes of fluoride and calcium in this process.