• Title/Summary/Keyword: Calcium carbonate precipitation

Search Result 71, Processing Time 0.025 seconds

Synthesis of nano-crystalline slaked lime using design of experiment (실험계획법을 이용한 나노 결정 소석회 합성)

  • Kim, Jin-Seong;Kim, Jung-Woo;Lee, Hee-Soo;Kim, Yong-Nam;Shin, Hyun-Gyoo;Kim, Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.4
    • /
    • pp.174-178
    • /
    • 2008
  • Nano-crystalline slaked lime was synthesized using design of experiment. In order to synthesize slaked lime, calcium chloride $(CaCl_2)$ and urea were used as starting materials. Calcium chloride solution and urea solution were mixed and heated in vessel that calcium carbonate was precipitated during heating. Precipitates were filtered, washed several times using D.I.water and ethanol and finally dried in oven. Slaked lime $(Ca(OH)_2)$ has been fabricated by the hydration of calcined $CaCO_3$. Design of experiment (Taguchi method) was used to optimize parameter, to minimize noise factors of experiment and to statistically analyze the results. Slaked lime having about 50 nm in optimized crystallite size could be obtained by calcination of $CaCO_3$ at $1000^{\circ}C$ for 0.5 h and hydration with D.I water containing ethanol and oxalic acid.

Studies on the Alleviation of Heavy Metal (Cadmium) Damage through Soil Improvement (Extraction of Cadmium and the Damage through Exchangeable Cd++ by the Application of Soil Amendments) (중금속(重金屬)(Cd)의 피해경감(被害輕減)을 위(爲)한 토양개량(土壤改良)에 관(關)한 연구(硏究) I. Cd침출(浸出)과 개량제(改良劑) 시용(施用)으로 인(因)한 치환성(置換性) Cd의 감소(減少))

  • Oh, Wang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.4
    • /
    • pp.242-249
    • /
    • 1982
  • Effects of lime and ameliolating materials on decreasing available soil cadmium were studied, applying the amendments to Cd pre-and post-treated soils. Soil sttreated with Cd were placed in pots and kept under field moisture condition, summer through winter in 1981. The results of soil analysis made 40 to 60 days after the Cd treatment are as follows ; 1. Greater amount of Cd was extracted by 0.1N-HCl or 2% Citric acid than N-AcNH4 solution. More Cd was dissoluted by 0.1-HCl than 2% Citric acid. No Cd was extracted by pure water. Showing a wide variance in the amount of extractable Cd among treatments (amendments), the $N-AcNH_4$ solution seemed to be the most effective extracting solution of available soil cadmium. 2. Calcium hydroxide was the most effective materials in reducing $N-AcNH_4$ extractable Cd, followed by calcium carbonate and calcium silicate. 3. Superphosphate is also effective in reducing exchangeable cadmium. The reduction seemed to be attributed to the precipitation of cadmium phosphate. 4. The exchangeable cadmium by $N-AcNH_4$ was large in the soil pH range of 6.0 and 6.5, and it decreased as the soil pH became far apart from these values. The decrese of exchangeable Cd at low pH seemed to be related to the increase of $Mn^{+{+}}$ and that at the high pH to the precipitation as Cd-hydroxide.

  • PDF

The Monitoring of Corrosive Water Quality in Water Distribution System by Corrosion Characteristics of Raw and Tap water (원·정수의 부식특성에 따른 상수관망에서의 부식성 수질 모니터링)

  • Bae, Seog-Moon;Kim, Do-Hwan;Son, Hee-Jong;Choi, Dong-Hoon;Kim, Ik-Sung;Kim, Kyung-A
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.907-915
    • /
    • 2015
  • The tap water is generally known to be corrosive in the pH range at 6.5 ~ 7.5. And the degree of corrosion varies depending on the types of raw water such as river surface water or lake water of the dam. Although several corrosion index represents the corrosivity of tap water, the typical corrosion indexes such as Langelier saturation index (LI) and calcium carbonate precipitation potential (CCPP) were calculated to monitoring the corrosive water quality about raw and tap water in water distribution system. To control the corrosive water quality, the correlation between corrosion index and water quality factors were examined. In this study, corrosion index (LI, CCPP) and the pH was found to be most highly correlated.

Optical Characteristics of Eco-friendly In-situ Recycled Paper with Limestone as Filler (석회석을 원료로 사용한 재생용지의 친환경 In-situ Filler로서의 광학적 특성 연구)

  • Lee, Hyun-Jae;Lee, Lown;Kim, Chun-Sik;Nam, Seong-Young;Seo, Yung-Bum;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.2
    • /
    • pp.132-137
    • /
    • 2014
  • The study was performed with low-grade limestone, which is used to make cement or is disposed of due to its low CaO content. In this study, the optimal condition of limestone with which to manufacture precipitated calcium carbonate (PCC) and limestone in fiber was determined through in-situ reactions. The best firing condition is with slaked lime with rapid cooling after 2 h of firing at $1000^{\circ}C$. In addition, the content of CaO can be increased by sorting the low-grade limestone using a 200 mesh filter, and the optical quality of old newspaper (ONP) was similar when using both low-grade and high-grade limestone. Also, controlling the particle size of PCC is an important factor pertaining to the optical characteristics of paper.

Characterization of Three Antifungal Calcite-Forming Bacteria, Arthrobacter nicotianae KNUC2100, Bacillus thuringiensis KNUC2103, and Stenotrophomonas maltophilia KNUC2106, Derived from the Korean Islands, Dokdo and Their Application on Mortar

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1269-1278
    • /
    • 2013
  • Crack remediation on the surface of cement mortar using microbiological calcium carbonate ($CaCO_3$) precipitation (MICP) has been investigated as a microbial sealing agent on construction materials. However, MICP research has never acknowledged the antifungal properties of calcite-forming bacteria (CFB). Since fungal colonization on concrete surfaces can trigger biodeterioration processes, fungi on concrete buildings have to be prevented. Therefore, to develop a microbial sealing agent that has antifungal properties to remediate cement cracks without deteriorative fungal colonization, we introduced an antifungal CFB isolated from oceanic islands (Dokdo islands, territory of South Korea, located at the edge of the East Sea in Korea.). The isolation of CFB was done using B4 or urea-$CaCl_2$ media. Furthermore, antifungal assays were done using the pairing culture and disk diffusion methods. Five isolated CFB showed $CaCO_3$ precipitation and antifungal activities against deteriorative fungal strains. Subsequently, five candidate bacteria were identified using 16S rDNA sequence analysis. Crack remediation, fungi growth inhibition, and water permeability reduction of antifungal CFB-treated cement surfaces were tested. All antifungal CFB showed crack remediation abilities, but only three strains (KNUC2100, 2103, and 2106) reduced the water permeability. Furthermore, these three strains showed fungi growth inhibition. This paper is the first application research of CFB that have antifungal activity, for an eco-friendly improvement of construction materials.

Application of Pulsed Electric Field Treatment for Scaling Prevention (스케일형성 방지를 위한 펄스 전기장 처리의 적용)

  • Choi, Seung-Pil;Kim, Jong-Oh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.51-56
    • /
    • 2011
  • This study was conducted to investigate the applicability of pulsed electric field (PEF) treatment for the prevention of scaling formation and membrane fouling reduction. To validate the effect of PEF and to identify the mechanism, some experiments with and without PEF treatment were carried out. PEF treatment affected the precipitation of $CaCO_3$ by which $CaCO_3$ particles were actively grown and sedimented. It was confirmed that the calcium ions were decreased as 78% and particle size was grown by PEF treatment. It was also verified that the crystalline structure of $CaCO_3$ was transformed by PEF treatment from Aragonite, which is formed at a high temperature and hard to be removed, to Calcite being stable at room temperature. In PEF treatment, permeate volume and permeation flux were greater than that of without PEF, case while Langelier Index(LI) decreased. From the experiment results, PEF treatment is believed to be an effective method to prevent scaling formation and to mitigate $CaCO_3$ fouling as the pretreatment of membrane filtration.

Engineering Characteristics of Bio-cemented Soil Mixed with PVA Fiber (PVA섬유를 혼합한 미생물 고결토의 공학적 특성)

  • Choi, Sun-Gyu;Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.27-33
    • /
    • 2016
  • In this study, Polyvinyl alcohol (PVA) fiber was used to increase strength (unconfined compressive strength and tensile strength) of bio-cemented sand using microorganism. Ottawa sand was mixed with PVA fibers having three fiber contents (0, 0.4, and 0.8%). The fiber mixed sand was treated 14 times by using Microbially Induced Calcite Precipitation (MICP) which included culture (2 times per day) during 7 days to improve its engineering properties. The Bacillus Sporosarcina pasteurrii (Bacillus sp.) was used for urease activity. The specimen was prepared as a cylindrical specimen of 5 cm in diameter and 10 cm in height. Unconfined compressive strength and tensile strength were measured after cementation. Moreover, calcium carbonate content and SEM analyses were performed with a piece of sample. An average value of unconfined compressive strength increased and then slightly decreased but an average value of tensile strength ratio increased with increasing carbonate content the in same condition. Unconfined compressive strength and tensile strength increased about 30% and 160%, respectively. A strength ratio of unconfined compressive strength to tensile strength representing the brittleness decreased from 8 to 4 when fiber content increased from 0.0 to 0.8%. Such bio-cemented sand can be applied into slope area to prevent its shear failure or increase its tensile strength.

Water Quality Variation on the Unit Operation of Water Treatment Process When CCPP Index was Controlled for Internal Corrosion of Water Pipes (수도관 내부부식방지를 위한 CCPP 조절시 정수공정내에서의 수질변화)

  • Lee, Jae-In;Kim, Do-Hwan;Lee, Ji-Hyung;Kim, Dong-Youn;Hong, Soon-Heon;Shin, Pan-Sae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.362-368
    • /
    • 2005
  • The pH, alkalinity and calcium hardness could be adjusted by $CO_2$, $Ca(OH)_2$, and $Na_2CO_3$ addition in the water treatment process for corrosion protection of the water pipes. This research was performed to investigate the effect on the variation of water quality on the unit process by addition $CO_2$, $Ca(OH)_2$, and $Na_2CO_3$ in water treatment process. Carbon dioxide and lime were added before the coagulation basin and soda ash was added after the BAC process. pH and aklainity were increased at coagulation basin then after the water qualities had sustained similiarly to BAC process. There was no effect on turbidity and DOC removal efficiency during experimental period by addition\ $CO_2$, $Ca(OH)_2$, and $Na_2CO_3$ solution was added into clear well, the last process for optimum control of CCPP and is used mainly to control pH and alkalinity. In this research, average pH, alkalinity, and calcium hardness in treated water were 8.39, 61.4 mg/L as $CaCO_3$, 59.4 mg/L as $CaCO_3$, respectively and CCPP of treated water was higher than 29.5 mg/L to BAC process water, so adjusted water was expected to prevent internal corrosion of water pipe.

Chemical characteristics of wet precipitation in urban and mountainous sites of Jeju Island

  • Bu, Jun-Oh;Song, Jung-Min;Park, Sook-Young;Kang, Hee-Ju;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.33-41
    • /
    • 2020
  • Wet precipitation samples were collected in Jeju City and Mt. Halla-1100 site (a site at an altitude of 1100 m on Mt. Halla) during 2011-2013, and their major ionic species were analyzed to examine the chemical composition and characteristics. A comparison of ion balance, electric conductivity, and acid fraction of precipitation revealed correlation coefficients in the range of r = 0.950~0.991, thereby implying the high quality of analytical data. Volume-weighted mean pH and electric conductivity corresponded to 4.86 and 25.5 µS/cm for Jeju City, and 4.98 and 15.1 µS/cm for Mt. Halla-1100 site, respectively. Ionic strengths of the wet precipitation in Jeju City and Mt. Halla-1100 site corresponded 0.3 ± 0.5 and 0.2 ± 0.2 mM, respectively, thereby indicating that more than 30 % of total precipitation was within a pure precipitation criteria. The precipitation with a pH range of 4.5 - 5.0 corresponded to 40.8 % in Jeju City, while the precipitation with a pH range of 5.0 - 5.5 corresponded to 56.9 % in Mt. Halla-1100 site, thereby indicating slightly more weak acidity than that in Jeju city. The volume-weighted mean concentration (µeq/L) of ionic species was in the order of Na+ > Cl- > nss-SO42- > NO3- > Mg2+ > NH4+ > H+ > nss-Ca2+ > PO43- > K+ > CH3COO- > HCOO- > NO2- > F- > HCO3- > CH3SO3- at Jeju City area, while it corresponded to Na+ > Cl- > nss-SO42- > NO3- > NH4+ > H+ > Mg2+ > nss-Ca2+ > PO43- > CH3COO- > K+ > HCOO- > NO2- > F- > HCO3- > CH3SO3- at Mt. Halla-1100 site. The compositions of sea salts (Na+, Cl-, Mg2+) and secondary pollutants (NH4+, nss-SO42-, NO3-) corresponded to 66.1 % and 21.8 %, respectively, in Jeju City and, 49.9 % and 31.5 %, respectively, in Mt. Halla-1100 site. The acidity contributions in Jeju City and Mt. Halla-1100 site by inorganic acids, i.e., sulfuric acid and nitric acid, corresponded to 93.9 % and 91.4 %, respectively, and the acidity contributions by organic acids corresponded to 6.1 % and 8.6 %, respectively. The neutralization factors in Jeju City and Mt. Halla1100 site by ammonia corresponded to 29.8 % and 30.1 %, respectively, whereas the neutralization factors by calcium carbonate corresponded to 20.5 % and 25.2 %, respectively. From the clustered back trajectory analysis, the concentrations of most ionic components were higher when the airflow pathways were moved from the continent to Jeju area.

Determination of Hydroxyapatite Precipitation Condition from the $Ca-PO_4-H_2O$ System ($Ca-PO_4-H_2O$계로부터 수산화아파타이트의 침전조건 결정)

  • Oh, Young-Jei
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.208-214
    • /
    • 2000
  • The formation and dissolution of hydroxides, carbonates and hydroxyapatite (HAp), which depend on the pH of solution, are important factor for the preparation of homogeneous and fine HAp, $Ca_{10-x}(HPO_4)_x(PO_4)_{6-x}(OH)_{2-x}(x=0)$, ceramic powder from the $Ca-PO_4-H_2O$ system. Since the solubility of each complex ion is a linear function of pH, the solubility diagram can be obtained by plotting the logarithmic molar concentrations calculated from the values of the equilibrium constants and solubility products for hydroxides, carbonates, and hydroxyapatite. The optimum pH condition for the formation of single phase $Ca_{10-x}(HPO_4)_x(PO_4)_{6-x}(OH)_{2-x}(x=0)$ powder in $Ca-PO_4-H_2O$ system at $25^{\circ}C$ was estimated as $10.5{\pm}0.5$ through the theoretical consideration. The HAp powder dried at $80^{\circ}C$ showed a fine agglomerated particles with a size of 75 nm. The HAp powder calcined at $1,000^{\circ}C$ consisted of nearly homogeneous particles with a size of 450 nm. Even though the dried HAp particles consisted of agglomeration, mechanical properties were superior due to fine microstructure after sintering.

  • PDF