• Title/Summary/Keyword: Calcium aluminate cement

Search Result 62, Processing Time 0.033 seconds

Hydration Behaviors of Portland Cement with Different Lithologic Stone Powders

  • Xiong, Zuqiang;Wang, Peng;Wang, Yuli
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.1
    • /
    • pp.55-60
    • /
    • 2015
  • In this study, influence of different stone powders (SP), including limestone powders (LP), quartzite powders (QP), and granitic powders (GP), on the hydration behaviors of portland cement, for example, setting time, hydration heat, and hydration products, were discussed. The initial and the final setting time both shorten when the content of LP is 5 %, however, they are slightly delayed by the other two SPs. The LP has no obvious influence on the arrival time of the first peak in the exothermal curves, and it makes the peak value decrease; the other two SPs postpone the appearance of the first peak, and they also make the peak value decrease. For the second peak, LP shifts the peak position to the left, QP has no effect on this peak position, and GP makes the appearance of this peak delayed by 143 min. Similarly, three kinds of SPs have different influence on the hydration products of portland cement. The LP precipitates the formation of hydrated calcium carbo aluminate, the QP the formation of hydrated garnet, and the GP makes the amount of Tobermorite increase.

Experiment on Chloride Adsorption by Calcium Aluminate Phases in Cement (시멘트내 칼슘 알루미네이트 상에 의한 염소이온의 흡착반응 연구)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.389-397
    • /
    • 2017
  • Friedel's salt is an important product of chemical adsorption between cement hydrate and chloride ions because it contains chlorine in its structure. When cement reacts with water in the presence of chloride ions, the $C_3A$ phase, and $C_4AF$ phase react with chloride to produce Friedel's salt. If chloride ions penetrate into concrete from external environments, many calcium aluminate hydrates, including AFm, can bind chloride ions. It is very important, therefore, to investigate the chloride binding isotherm of $C_3A$ phase, $C_4AF$ phase, and AFm phase to gain a better understanding of chloride binding in cementitious materials. Meanwhile, the adsorption isotherm can provide us with the fundamental information for the understanding of adsorption process. The experimental results of the isotherm can supply not only the quantitative knowledge of the cement-Friedel's salt system, but also the mechanism of adsorption and the properties of their interactions. The purpose of this study is to explore the time dependant behaviors of chloride ions adsorption with $C_3A$, $C_4AF$ and AFm phases. The chloride adsorption isotherm was depicted with Langmuir isotherm and the adsorption capacity was low in terms of the stoichiometric point of view. However, the chloride adsorption of AFm phase was depicted with Freundlich isotherm and the value was very low. Since the amount of the adsorption was governed by temperature, the affecting parameters of isotherm were expressed as a function of temperature.

Physicochemical properties of a calcium aluminate cement containing nanoparticles of zinc oxide

  • Amanda Freitas da Rosa;Thuany Schmitz Amaral;Maria Eduarda Paz Dotto;Taynara Santos Goulart;Hebert Luis Rossetto;Eduardo Antunes Bortoluzzi;Cleonice da Silveira Teixeira;Lucas da Fonseca Roberti Garcia
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.1
    • /
    • pp.3.1-3.14
    • /
    • 2023
  • Objectives: This study evaluated the effect of different nanoparticulated zinc oxide (nano-ZnO) and conventional-ZnO ratios on the physicochemical properties of calcium aluminate cement (CAC). Materials and Methods: The conventional-ZnO and nano-ZnO were added to the cement powder in the following proportions: G1 (20% conventional-ZnO), G2 (15% conventional-ZnO + 5% nano-ZnO), G3 (12% conventional-ZnO + 3% nano-ZnO) and G4 (10% conventional-ZnO + 5% nano-ZnO). The radiopacity (Rad), setting time (Set), dimensional change (Dc), solubility (Sol), compressive strength (Cst), and pH were evaluated. The nano-ZnO and CAC containing conventional-ZnO were also assessed using scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Radiopacity data were analyzed by the 1-way analysis of variance (ANOVA) and Bonferroni tests (p < 0.05). The data of the other properties were analyzed by the ANOVA, Tukey, and Fisher tests (p < 0.05). Results: The nano-ZnO and CAC containing conventional-ZnO powders presented particles with few impurities and nanometric and micrometric sizes, respectively. G1 had the highest Rad mean value (p < 0.05). When compared to G1, groups containing nano-ZnO had a significant reduction in the Set (p < 0.05) and lower values of Dc at 24 hours (p < 0.05). The Cst was higher for G4, with a significant difference for the other groups (p < 0.05). The Sol did not present significant differences among groups (p > 0.05). Conclusions: The addition of nano-ZnO to CAC improved its dimensional change, setting time, and compressive strength, which may be promising for the clinical performance of this cement.

Manufacture of 11CaOㆍ$7Al_2O_3$$CaCl_2$Clinker Using the Bottom Ash of Municipal Solid Waste Incinerator Ash (생활폐기물 소각재중 바닥재를 이용한 11CaOㆍ$7Al_2O_3$$CaCl_2$클링커의 제조)

  • Ahn Ji-Whan;Kim Hyung-Seok;Han Gi-Ckun;Cho Jin-Sang;Han Ki-Suk
    • Resources Recycling
    • /
    • v.11 no.4
    • /
    • pp.27-36
    • /
    • 2002
  • The clinker of which main component was calcium-chloroaluminate ($l1CaOㆍ7Al_2$$O_3$$CaCl_2$), was synthesized with the bottom ash of municipal solid waste incinerator ash. The hydration mechanism and synthesis temperature of calcium-chloro-aluminate were investigated. The synthesized clinker was blended with a cement. It was substituted with 3~13 wt.% for clinker and $CaSO_4$ of ordinary portland cement. The compressive strength and the content of leached heavy metals of its mortar were measured. Calcium-chloroaluminate was synthesized above $800^{\circ}C$ and its main hydrate was ettringite ($3CaOㆍAl_2$$O_3$$3CaSO_4$$32H_2$O). The calcium-chloroaluminate was also synthesized above $800^{\circ}C$ with the bottom ash of which size fraction was below 30 mesh mainly. The compressive strength of the blended cement mortar was increased as the additive content of the clinker synthesized from the bottom ash was increased by 11 wt.%. The concentration of heavy metals leached from each mortar was satisfied with the value of the environmental standards and regulations.

Reuse of dredged sediments as pavement materials by cement kiln dust and lime treatment

  • Yoobanpot, Naphol;Jamsawang, Pitthaya;Krairan, Krissakorn;Jongpradist, Pornkasem;Horpibulsuk, Suksun
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.1005-1016
    • /
    • 2018
  • This paper presents an investigation on the properties of two types of cement kiln dust (CKD)-stabilized dredged sediments, silt and clay with a comparison to hydrated lime stabilization. Unconfined compressive strength (UCS) and California bearing ratio (CBR) tests were conducted to examine the optimal stabilizer content and classify the type of highway material. A strength development model of treated dredged sediments was performed. The influences of various stabilizer types and sediment types on UCS were interpreted with the aid of microstructural observations, including X-ray diffraction and scanning electron microscopy analysis. The results of the tests revealed that 6% of lime by dry weight can be suggested as optimal content for the improvement of clay and silt as selected materials. For CKD-stabilized sediment as soil cement subbase material, the use of 8% CKD was suggested as optimal content for clay, whereas 6% CKD was recommended for silt; the overall CBR value agreed with the UCS test. The reaction products calcium silicate hydrate and ettringite are the controlling mechanisms for the mechanical performance of CKD-stabilized sediments, whereas calcium aluminate hydrate is the control for lime-stabilized sediments. These results will contribute to the use of CKD as a sustainable and novel stabilizer for lime in highway material applications.

Evaluation of Crack Resistant Performance in Cement Mortar with Steel Fiber and CSA Expansion Admixture (CSA 팽창재를 혼입한 강섬유 보강 모르타르의 균열 저항성능 평가)

  • Ahn, Jung-Kil;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.125-132
    • /
    • 2014
  • Steel fiber is a effective composite for crack resistance and improve structural performance under tensile loading. This study presents an evaluation of crack resistance and structural performance in cement mortar with steel fiber and expansion agent through internal chemical prestressing. For this work, cement mortar samples with 10% replacement of cement binder with CSA (Calcium-Sulfo-Aluminate) expansion agent and 1% volume ratio of steel fiber are prepared. Including basic mechanical properties, initial cracking load and fracture energy are evaluated in cement mortar beam with notch. Initial cracking load and fracture energy in cement mortar with CSA and steel fiber increase by 1.75 and 1.41~1.53 times compared with those in cement mortar with steel fiber. With optimum mix design for steel fiber and CSA expansive agent, the composite with chemical prestressing can be applied to various members and effectively improve crack resistance to external loading.

An Experimental Study on the Reduction of Drying and Autogenous Shrinkage of High Performance Concrete Using CSA Expansive Additives and Inorganic Admixtures (CSA계 팽창재 및 무기질 환화재를 이용한 고성능 콘크리트의 건조수축 및 자기수축 저감에 관한 실험 연구)

  • 홍상희;전병채;송명신;한천구;반호용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.386-391
    • /
    • 1998
  • Recently, high performance concrete developed has a good quality at fresh and hardened state, but high binder contents results in spending much money on manufacturing and many cracks by drying and autogenous shrinkage. Therefore, in this paper, not only prevention of cracks caused by drying and autogenous shrinkage, but improvement of quality and accmplishment of economy by applying F.A(fly ash), S.F(silica fume) and CSA(calcium sulfa aluminate) expansive additives as an inorganic admixtures in W/B 35% are discussed. According to the experimental results, when 5% of CSA Expansive additives and 15:5 (F.A:S.F)are replaced at unit cement content, high performance concrete with both good compensation of drying and autogenous shrinkage at hardened state is accomplished.

  • PDF

Early Hydration Properties of BFS by a Change of pH (pH 변화에 따른 고로수쇄 BFS의 초기 수화 특성)

  • Kang, Hyun Ju;Lee, Woong Geol;Song, Myong Shin;Kang, Seung Min;Kim, Kyeng Nam
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.442-447
    • /
    • 2012
  • This study investigated on the early hydration and physical characteristics of BFS by pH variation. NaOH solution was used as a pH activator. In the range from pH 12 to pH 14, Experiment was compared the hydration propertied of OPC(Ordinary Portland Cement) and BFS(Blast Furnace BFS) and BFS containing 2 wt% of gypsum. It was found that CAH(Calcium Aluminate Hydrates) phases and CSH(Calcium Silicate Hydrates) phases were formed during the early hydration of BFS, and that CAH phases, CSH phases and ettringites were formed during the early hydration of BFS containing 2 wt% of gypsum. Furthermore, early hydration of BFS and BFS containing 2 wt% of gypsum were faster then OPC at pH 14, and the 1 day compressive strength of BFS increased by approximately 30% compared to OPC, and BFS containing 2 wt% of gypsum also increased by approximately 40% compared to OPC.