• Title/Summary/Keyword: Calcium Silicate Materials

Search Result 134, Processing Time 0.021 seconds

A Study on the Volatilization of Ammonia from Flooded Soils Mixed with Rice Straw and Liming Materials (담수토양(湛水土壤)에서 볏짚과 석회물질(石灰物質) 시용(施用)이 암모니아 휘산(揮散)에 미치는 영향(影響))

  • Oh, Wang-Keun;Hwang, Kwang-Nam;Lee, Myong-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.3
    • /
    • pp.166-171
    • /
    • 1982
  • A laboratiory experiment incubated at about $30^{\circ}C$ for 34 days was conducted in order to learn the effect of liming materials and rice straw on the volatilization of ammonia from flooded soils applied with urea. 1. The application of calcium hydroxide and calcium silicate increased buffer action of flood soil, though it resulted in increase in the volatilization of ammonia through raising flooded soil pH containing bicarbonate. 2. The mixing of rice straw powder to soil lowered pH of flooded soil, and decreased the volatilization of ammonia. The effect was particulary large when noliming material was used. 3. Calcium hydroxide depressed the evolution of $CO_2$ in the early days of incubation after flooding, while calcium silicate promoted the ammonification of soil nitrogen from the begining of flooding giving slow change in soil chemical properties. The rice straw was also effective in providing a favorable soil condition for the ammonification rather quickly.

  • PDF

Effect of Intracanal Medicaments on Push-out Bond Strength of Calcium Silicate-based Materials (근관내 약제가 규산칼슘 기반 재료의 압출 강도에 미치는 영향)

  • Jeong, Hyuntae;Yang, Sunmi;Kim, Seonmi;Choi, Namki;Kim, Jaehwan
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.4
    • /
    • pp.455-463
    • /
    • 2018
  • The purpose of this study was to evaluate the effect of the intracanal medicaments on the push-out bond strength of the calcium silicate-based materials. Forty extracted single-root human mandibular premolars were sectioned below cementoenamel junction. Standardized root canal dimension was obtained with a parallel post drill. The specimens were randomly divided into a control group (no medicament), and experimental groups received medicaments with either CH (calcium hydroxide), DAP (double antibiotic paste; a mixture of ciprofloxacin and metronidazole), or TAP (triple antibiotic paste; a mixture of minocycline, ciprofloxacin and metronidazole). Following removal of medicaments with irrigation, roots were cut into sections with 1-mm-thickness. Thereafter, calcium silicate-based materials are applied to the specimens : (i) ProRoot MTA$^{(R)}$ and (ii) Biodentine$^{(R)}$. A push-out bond strength was measured and each specimen was examined to evaluate failure mode. Intracanal medication using CH significantly increased the bond strength to the root dentin. But there are no significant differences on the bond strength of ProRoot MTA$^{(R)}$ or Biodentine$^{(R)}$ among TAP, DAP and control groups. The dislodgement resistance of Biodentine$^{(R)}$ from root dentin was significantly higher than that of ProRoot MTA$^{(R)}$ regardless of the type of intracanal medicaments.

A micro-computed tomographic evaluation of root canal filling with a single gutta-percha cone and calcium silicate sealer

  • Kim, Jong Cheon;Moe, Maung Maung Kyaw;Kim, Sung Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.2
    • /
    • pp.18.1-18.9
    • /
    • 2020
  • Objectives: The purpose of this study was to evaluate the void of root canal filling over time when a calcium silicate sealer was used in the single gutta-percha cone technique. Materials and Methods: Twenty-four J-shaped simulated root canals and twenty-four palatal root canals from extracted human maxillary molars were instrumented with ProFile Ni-Ti rotary instruments up to size 35/0.06 or size 40/0.06, respectively. Half of the canals were filled with Endoseal MTA and the other half were with AH Plus Jet using the single gutta-percha cone technique. Immediately after and 4 weeks after the root canal filling, the samples were scanned using micro-computed tomography at a resolution of 12.8 ㎛. The scanned images were reconstructed using the NRecon software and the void percentages were calculated using the CTan software, and statistically analyzed by 1-way analysis of variance, paired t-test and Tukey post hoc test. Results: After 4 weeks, there were no significant changes in the void percentages at all levels in both material groups (p > 0.05), except at the apical level of the AH Plus Jet group (p < 0.05) in the simulated root canal showing more void percentage compared to other groups. Immediately after filling the extracted human root canals, the Endoseal MTA group showed significantly less void percentage compared to the AH Plus Jet group (p < 0.05). Conclusions: Under the limitations of this study, the Endoseal MTA does not seem to reduce the voids over time.

Interface between calcium silicate cement and adhesive systems according to adhesive families and cement maturation

  • Nelly Pradelle-Plasse;Caroline Mocquot;Katherine Semennikova;Pierre Colon;Brigitte Grosgogeat
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.1
    • /
    • pp.3.1-3.14
    • /
    • 2021
  • Objectives: This study aimed to evaluate the interface between a calcium silicate cement (CSC), Biodentine and dental adhesives in terms of sealing ability. Materials and Methods: Microleakage test: 160 standardized class II cavities were prepared on 80 extracted human molars. The cavities were filled with Biodentine and then divided into 2 experimental groups according to the time of restoration: composite resin obturation 15 minutes after Biodentine handling (D0); restoration after 7 days (D7). Each group was then divided into 8 subgroups (n = 5) according to the adhesive system used: etch-and-rinse adhesive (Prime & Bond); self-etch adhesive 2 steps (Optibond XTR and Clearfil SE Bond); self-etch adhesive 1 step (Xeno III, G-aenial Bond, and Clearfil Tri-S Bond); and universal used as etch-and-rinse or self-etch (ScotchBond Universal ER or SE). After thermocycling, the teeth were immersed in a silver nitrate solution, stained, longitudinally sectioned, and the Biodentine/adhesive percolation was quantified. Scanning electron microscopic observations: Biodentine/adhesive interfaces were observed. Results: A tendency towards less microleakage was observed when Biodentine was etched (2.47%) and when restorations were done without delay (D0: 4.31%, D7: 6.78%), but this was not significant. The adhesives containing 10-methacryloyloxydecyl dihydrogen phosphate monomer showed the most stable results at both times studied. All Biodentine/adhesive interfaces were homogeneous and regular. Conclusions: The good sealing of the CSC/adhesive interface is not a function of the system adhesive family used or the cement maturation before restoration. Biodentine can be used as a dentine substitute.

Characterization of Environment-Friendly Ceramic Coating Materials (친환경적인 분말형 세라믹 페인트의 특성평가)

  • 이제철;신영훈;김태현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.521-526
    • /
    • 2002
  • In this paper, we described about the characteristic evaluation of environment-friendly ceramic paint with calcium-silicate mineral as a main binder. Particularly, we performed discharge of the environmental poisoning materials(e.g. VOCs, heavy metal, etc.), and properties of paint slurry and coating film of the ceramic paint. In the comparison of the ceramic paint with natural paint and mineral paint which were known as our environment-friendly paints, ceramic paint had good characteristics in the environmental safety and properies of wet slurry and dried coating film.

  • PDF

Investigation of Cement Matrix Compositions of Nanosilica Blended Concrete

  • Kim, Jung Joong;Moon, Jiho;Youm, Kwang-Soo;Lee, Hak-Eun;Lim, Nam-Hyoung
    • International Journal of Railway
    • /
    • v.7 no.3
    • /
    • pp.85-89
    • /
    • 2014
  • The use of pozzolanic materials in concrete mixtures can enhance the mechanical properties and durability of concrete. By reactions with pozzolanic materials and calcium hydroxide in cement matrix, calcium-silicate-hydrate (C-S-H) increases and calcium hydroxide decreases in cement matrix of concrete. Consequently, the volume of solid materials increases. The pozzolanic particles also fill spaces between clinker grains, thereby resulting in a denser cement matrix and interfacial transition zone between cement matrix and aggregates; this lowers the permeability and increases the compressive strength of concrete. Moreover, the total contents of alkali in concrete are reduced by replacing cements with pozzolanic materials; this prevents cracks due to alkali-aggregate reaction (AAR). In this study, nanosilica is incorporated in cement pastes. The differences of microstructural compositions between the hydrated cements with and without nanosilica are examined using nanoindentation, XRDA and $^{29}Si$ MAS NMR. The results can be used for a basic research to enhance durability of concrete slab tracks and concrete railway sleepers.

Study on the Sinterability of Silicon Substituted Hydroxyapatite (Si 치환 Hydroxyapatite의 소결 특성에 관한 연구)

  • Lee, Yoon-Joo;Kim, Young-Hee;Kim, Soo-Ryong;Jung, Sang-Jin;Riu, Do-Hyung;Song, Hee;Jun, Moo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1096-1101
    • /
    • 2003
  • Si -substituted hydroxyapatite has been prepared to obtain biomaterials having an improved biocompatibility. From FT-IR, XRD, and ICP analyses, it was confirmed that the single-phase of hydroxyapatite substituted by Si has formed. Si- substituted hydroxyapatite of up to 2 wt% for Si keeps its original structures intact for the sintering temperatures of up to 1200$^{\circ}C$. However, it is observed that the ion substitutions by the amount higher than the above ratios for the hydroxyapatite leads to destabilize original structures of the hydroxyapatite and to produce tricalcium phosphate and calcium phosphate silicate phases when the samples were sintered at 1l00$^{\circ}C$ or higher.

Efficacy of retreatment NiTi files for root canals filled with calcium silicate-based sealer (칼슘실리케이트 계열 실러로 충전한 근관에서 재치료용 NiTi 파일의 효율성)

  • Jae-Yun, Hyun;Kyung-Mo, Cho;Se-Hee, Park;Yoon, Lee;Yoon-Joo, Lee;Jin-Woo, Kim
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.4
    • /
    • pp.213-221
    • /
    • 2022
  • Purpose: The efficacy of the amount of sealer in the root canal and two retreatment NiTi file systems in removing filling materials. Materials and Methods: Extracted premolars with a single root canal were selected for this study. After access opening and root canal preparation up to size #40/.06, the specimens were randomly divided into four groups. Gutta percha (GP) tapers of .06 or .04 were used for each group and filled using a single-cone filling technique with CeraSeal, a calcium silicate-based sealer. Each group was retreated either using the ProTaper Universal Retreatment System (PTUR) or the Hyflex Remover (HR). The time taken to remove the filling material, the amounts of apically extruded debris, and canal cleanliness were measured and compared. Results: The amount of sealer did not affect the efficiency when removing the filling materials. However, the filling material was removed faster in the HR group than in the PTUR group. Two types of NiTi files showed similar retreatment effects in the amounts of apically extruded debris and in the degree of canal cleanliness. Conclusion: The amount of sealer in canal filling had no significant effect on retreatability. Retreatment with HR removed filling materials is faster than PTUR. There was no difference in other removal efficiencies according to the type of retreatment NiTi file.

CLINICAL APPLICATION OF MTA(MINERAL TRIOXIDE AGGREGATE) FOR APEXIFICATION (치근단 형성술(Apexification)에 있어서 MTA(Mineral Trioxide Aggregate)의 적용)

  • Baik, Byeoung-Ju;Jeon, So-Hee;Kim, Young-Sin;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.4
    • /
    • pp.700-708
    • /
    • 2001
  • Traumatic injuries in young patients can result in the interruption of the development of the incompletely formed roots. In teeth with incomplete root-end formation and necrotic pulps, the root canals must be completely debrided. Because of a lack of an apical stop and the presence of thin and fragile walls in these teeth, it is imperative to perform apexification to obtain an adequate apical seal. Calcium hydroxide has become the material of choice for apexification. Despite its popularity for the apexification procedure, calcium hydroxide therapy has some inherent disadvantages that include variablility of treatment time, unpredictability of apical closure, difficulty in patient follow-up, and delayed treatment. An alternative treatment to long-term apexification procedure is the use of an artificial apical barrier that allows immediate obturation of the canal. MTA(Mineral Trioxide Aggregate) is a powder consisting of fine hydrophilic particles of tricalcium silicate, tricalcium aluminate, tricalcium oxide and silicate oxide. MTA has a pH of 12.5 after setting, similar to calcium hydroxide. This may impart some antimicrobial properties. MTA has low solubility and a radiopacity slightly eater than that of dentin. Also, MTA leaked significantly less than other materials and induced hard-tissue formation more than other materials.

  • PDF

Hydrothermal Kinetics and Mechanisms of Lime and Quartz Used Solid State Reaction Equations (고상반응식을 이용한 석회-석영의 수열반응속도와 반응메카니즘)

  • Lim, Going
    • The Journal of Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.223-233
    • /
    • 1998
  • The kinetic and mechanism of the hydrothermal reaction between lime and quartz used solid state reaction equations have been investigated. Hydrothermal reaction on the starting materials was carried out in an autoclave that quartz mixed with calcium hydroxide in CaO/$SiO_2$ ratio of 0.8-1.0 for 0.5-8 hour at saturated steam pressure of $180-200^{\circ}C$. The rate of reaction was given from the ratio of uncombined lime and quartz content to the total lime and quartz content. The rate of reaction was obtained the results by the Jander's equation $[1-(1-\alpha)^{1/3}]^N=Kt$. The reaction of lime is controlled mainly by the dissolution such as N=1, and the reaction of quartz is controlled mostly by the diffusion such as $N\risingdotseq2$. The rate of hydrothermal reaction in the calcium silicate hydrates system is suggested to be determined generally by the mass transfer through the product laver formed around the reactant particles. The rate equation for whole hydrothermal reaction is shown that it is converted into the rate determining step by the diffusion from the boundary reaction such as approximately $N=1-2$.

  • PDF