• Title/Summary/Keyword: Calcium Nitrate

Search Result 163, Processing Time 0.023 seconds

Conformational transition of regenerated Antheraea pernyi silk fibroin sponge treated with aqueous ethanol solution and in vitro wound healing effect of wild silk fibroin solution (작잠 실크 피브로인에 의한 in vitro 상처 회복 효과 및 에탄올 처리에 따른 작잠 실크 피브로인 스폰지의 구조 전이)

  • Lee, Kwang-Gill;Jo, You-Young;Yeo, Joo-Hong;Lee, Heui-Sam;Kim, Kee-Young;Kim, Hyun-Bok;Kim, An-Sook;Kim, Seong-Gon;Kweon, HaeYong
    • Journal of Sericultural and Entomological Science
    • /
    • v.52 no.1
    • /
    • pp.10-15
    • /
    • 2014
  • Regenerated Antheraea pernyi silk sponge was prepared using calcium nitrate 4 hydrate melt and examined the conformational changes treated with aqueous ethanol solution. The conformation of silk sponges was changed from random coil structure to ${\beta}$-sheet and ${\alpha}$-helix conformation with low ethanol concentration (50 ~ 70%). On the other hand, that of silk sponges with 80% ethanol treatment showed ${\beta}$-sheet ($700cm^{-1}$), ${\alpha}$-helix ($625cm^{-1}$), and random coil ($660cm^{-1}$) specific peaks. Wound healing effect in vitro was observed by cytoslective wound healing kit. Therefore, regenerated Antheraea pernyi silk sponges might be used as promising wound dressing materials.

Deterioration of granite in Bunhwangsaseoktap (Stone pagoda of Bunhwnagsa Temple) (분황사석탑 구성 화강암의 훼손현상)

  • Do, Jinyoung
    • Journal of Conservation Science
    • /
    • v.17 s.17
    • /
    • pp.73-82
    • /
    • 2005
  • The Bunhwangsaseoktop is the oldest stone brick pagoda in Silla Period. The pagoda body is made by piling small brick-shaped stones trimmed from black andesite and the first-story core has a shrine, which is made by granite. In 1915 it was repaired on a large scale, but now is severely damaged. Many kind of the stone decay like flaking, granular disintegration have occurred especially on the granite surface of the pagoda. In this study have been investigated the stone decay type and its cause in relation to efflorescence on the body part. Various analysis show that the deterioration on the granite is due to the same materials that lead to efflorescence on the body stone surface. The soluble salt like sodium nitrate, calcium sulfate and sodium sulfate come from white joint mortar. This salt solution is recrystallized in the outside of the pagoda, but most of them flow down with rain. In This process the porous granite absorbes the dissolved salts with moisture into the inside by capillary action. In order to reduce this problem, therefore, white joint moral is changed with other less soluble materials. And it is necessary to take steps to prevent water from seep into the inside of the stone, because this water dissolves the white joint mortar.

  • PDF

Effect of Composted Animal Manure Application on Growth and Yield of Tomatoes and Changes of Soil Nutrients (발효퇴비 시용이 토마토의 생육 , 수량 및 토양중 양분변화에 미치는 영향)

  • Jun, Dae-Woo;Ku, Ja-Hyeong;Lee, Young-Bok;Lee, Jong-Suk;Moon, Chang-Shik
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.254-259
    • /
    • 1998
  • This study was focused on finding out the potential problems associated with organic farming system. The effect of composted animal manures subsequent inoculation of microbes on growth and yield of tomatoes (Lycopersicon esculentum Mill. 'Minicarol') were examined to develop a proper organic farming practice. Plant heights were greater in composted manure treatment than in conventional practice, whereas widths of leaves were higher in conventional field. Chlorophyll contents between various amount of composted manure application were gradually decreased and showed no significant differences after 45 days of planting. The yield in the treatment applied 12 ton of composted animal manure per 10a as pre-planting fertilizer and following microbial inoculation were only 50-60% compared to that of conventional farming. However, yield increased up to 80% when additional composts were applied to the treatment received 6 ton of composted animal manure per 10a in the middle of cultivation. Microbial inoculation followed by composted manure application induced rapid decrease of nitrogen content in soil. However, the density of microorganisms was significantly increased. Tomatoes produced through organic farming were clear in color, Further, soluble solid and acid content were increased. The highest level of acid and solids were observed in the treatment applied 12 ton of digested swine manure per 10a. Although nitrogen content including ammonium and nitrate rapidly increased after application of composts, these were significantly reduced approximately 4-5 weeks after planting. The level of phosphorus, potassium, magnesium and calcium showed gradual decrease compared to nitrogen.

  • PDF

Thermal Decomposition and Stabilization of the Lagoon Sludge Solid Waste after Dissolution with Water (라군 슬러지 물 용해 후 고체 패기물의 열분해 및 안정화)

  • Oh Jong-Hyeok;Hwang Doo-Seong;Lee Kue-Il;Choi Yun-Dong;Hwang Sung-Tae;Park Jin-Ho;Park So-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.249-256
    • /
    • 2005
  • Thermal decomposition and stabilization characteristics of the solid cake after the dissolution of nitrate of the lagoon sludge was investigated. Most of the nitrates were dissolved in the water and removed to the filtrate, but small amount of nitrates, calcium carbonate and uranium were remained in the solid cake. The solid cake was thermally decomposed in the muffle furnace at $900^{\circ}C$ for 5 hours. Uranium, which is in the lagoon 1, was stabilized with $NaNO_3$ decomposition to $Na_{2}O{\cdot}2UO_3$ form. For the lagoon 2, it is confirmed that CaO, which was created by thermal decomposition of the $Ca(NO_3)_2$ and $CaCO_3$, was transferred to $Ca(OH)_2$ in the air with water. Because it is known that $Ca(OH)_2$ is stable material, further additives did not need to the stabilization of the thermal decomposition of the lagoons.

  • PDF

Stable Carbon and Nitrogen Isotopes of Sinking Particles in the Eastern Bransfield Strait (Antarctica)

  • Khim, Boo-Keun;Kim, Dong-Seon;Shin, Hyoung-Chul;Kim, Dong-Yup
    • Ocean Science Journal
    • /
    • v.40 no.3
    • /
    • pp.167-176
    • /
    • 2005
  • A time-series sediment trap was deployed at 1,034 m water depth in the eastern Bransfield Strait for a complete year from December 25, 1998 to December 24, 1999. About 99% of total mass flux was trapped during an austral summer, showing distinct seasonal variation. Biogenic particles (biogenic opal, particulate organic carbon, and calcium carbonate) account for about two thirds of annual total mass flux $(49.2\;g\;m^{-2})$, among which biogenic opal flux is the most dominant (42% of the total flux). A positive relationship (except January) between biogenic opal and total organic carbon fluxes suggests that these two variables were coupled, due to the surface-water production (mainly diatoms). The relatively low $\delta^{13}C$ values of settling particles result from effects on C-fixation processes at low temperature and the high $CO_2$ availability to phytoplankton. The correspondingly low $\delta^{l5}N$ values are due to intense and steady input of nitrates into surface waters, reflecting an unlikely nitrate isotope fractionation by degree of surface-water production. The $\delta^{l5}N$ and $\delta^{l3}C$ values of sinking particles increased from the beginning to the end of a presumed phytoplankton bloom, except for anomalous $\delta^{l5}N$ values. Krill and the zooplankton fecal pellets, the most important carriers of sinking particles, may have contributed gradually to the increasing $\delta^{l3}C$ values towards the unproductive period through the biomodification of the $\delta^{l3}C$ values in the food web, respiring preferentially and selectively $^{12}C$ atoms. Correspondingly, the increasing $\delta^{l5}N$ values in the intermediate-water trap are likely associated with a switch in source from diatom aggregates to some remains of zooplankton, because organic matter dominated by diatom may be more liable and prone to remineralization, leading to greater isotopic alteration. In particular, the tendency for abnormally high $\delta^{l5}N$ values in February seems to be enigmatic. A specific species dominancy during the production may be suggested as a possible and speculative reason.

The Study on the Ion Water Characteristics of Raw Water in the Domestic Natural Mineral Water (국내 유통 중인 먹는샘물 원수의 이온류 수질 특성에 관한 연구)

  • Lee, Leenae;Ahn, Kyunghee;Min, Byungdae;Yang, Mihee;Choi, Incheol;Chung, Hyenmi;Park, Juhyun
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.5
    • /
    • pp.442-449
    • /
    • 2016
  • The goal of this study is to provide basic data to establish a foundation for the provision of safe drinkable water. The raw water of natural mineral water was analyzed to determine the quantities of anions (F-, Cl-, NO3-N-, and SO42- ) and cations (Ca2+, K+, Mg2+, and Na+) during the former and latter half of 2016. Analysis of the current quality of the raw water of natural mineral water among domestic manufacturers showed average anions contents of 0.46mg/L of fluorine, 8mg/L of chlorine ion, 1.5mg/L of nitrate nitrogen, and 12mg/L of sulfate ion. While the fluorine content was greater than the water quality criterion of 2.0mg/L at four points, the fluorine level was overall stable. The average cations contents included 21.3mg/L of calcium, 1.0mg/L of potassium, 3.4mg/L of magnesium, and 9.6mg/L of sodium. The chemical characteristics were compared among the major ions, and the results are presented in a piper diagram. The content ratio of cations was in the order of Ca2+> Na+>Mg2+>K+, whereas that of anions was in the order of SO42->Cl->NO3-N->F-. While the cations were slightly scattered, the anions were generally concentrated except for at a few points. The Ca-Na-HCO3 type was dominant overall in water sources from diorite, gneiss, and granite, while the Na-Mg-Ca-HCO3-Cl type was dominant in basalt sources. Mineral water manufacturers source their water under various conditions, including in-hole casing, excavation depth, and contact state of bedrock; even within the same rocky area, some differences in the water quality type can occur. When the depth of the water source was taken into account, the mean anions contents of F-, Cl-, NO3-N-, and SO42- were similar, with no significant differences according to depth. Of the cations, K+ and Na+ showed no significant differences across all the tubular wells, whereas Ca2+ and Mg2+ decreased in content with depth.

Effect of Root Zone Temperature during the Night on the Growth and yield of Perlite Cultured Tomato in Winter (겨울철 토마토 2단말식 펄라이트경에서 야간 근권 온도가 토마토의 생육 및 수량에 미치는 영향)

  • 이한철;강경희;권기범;최영하
    • Journal of Bio-Environment Control
    • /
    • v.10 no.1
    • /
    • pp.30-35
    • /
    • 2001
  • This experiment was undertaken to investigate the effect of root zone temperature during the night on absorption of mineral nutrients, growth, and fruit yield of the truss-limited hydroponic tomatoes in winter. The root zone temperature was either controlled to 10, 15, 20, $25^{\circ}C$, or left uncontrolled at ambient temperatures. Temperature of the covered beds rose as root zone temperature was raised, but it in all treatments was less than 3$^{\circ}C$ higher than that in the control. Raising root zone temperature, except $25^{\circ}C$, showed positive effect on plant height, leaf length, stem diameter, and plant fresh and dry weight, but not on T/R ratio which was the greatest in the control. Root activity in all treatments except $25^{\circ}C$ increased as compared to the control. Mean fruit weight, fruit count per plant, and fruit yield were the greatest in 2$0^{\circ}C$ treatment. Root zone temperature did not significantly affect the contents of total nitrate and magnesium in leaves, stems and roots. Concentrations of phosphate and calcium increased in leaves and stems, but decreased in roots as root zone temperature increased. Overall, 2$0^{\circ}C$ treatment gave the greatest growth and energy efficiency.

  • PDF

A Study of the Removal Characteristics of Heavy Metal(loid)s using by Product from NoMix Toilet and its Characterization (NoMix toilet 에서 발생하는 부산물을 이용한 수용액내 (준)중금속 제거 특성 및 가능성 연구)

  • Shim, Jaehong;Lim, Jeong-Muk;Kim, Jin-Won;Kim, Hae-Won;Oh, Byung-Taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.28-39
    • /
    • 2016
  • Struvite (MgNH4PO4 ⋅ 6H2O) and hydroxyapatite (HAP, Ca10(PO4)6(OH)2) precipitation in urine-separating toilets (NoMix toilets) causes severe maintenance problems and also reduce the phosphate and calcium content. Application of urine separating technique and extraction of by-products from human urine is a cost effective technique in waste water treatment. In this study, we extract urine calcite from human urine by batch scale method, using urease producing microbes to trigger the precipitation and calcite formation process. Extracted urine calcite (calcining at 800℃) is a potential adsorbent for removal of heavy metal(loid)s like (Cd2+, Cu2+, Ni2+, Pb2+, Zn2+ and As3+) along with additional leaching analysis of total nitrogen (T-N), phosphate (T-P) and chemical oxygen demand (COD). The transformations of calcite during synthesis were confirm by characterization using XRD, SEM-EDAX and FT-IR techniques. In additional, the phosphate leaching potential and adsorbate (nitrate) efficiency in aqueous solution was investigated using the calcinedurine calcite. The results indicate that the calcite was effectively remove heavy metal(loid)s lead up to 96.8%. In addition, the adsorption capacity (qe) of calcite was calculated and it was found to be 203.64 Pb, 110.96 Cd, 96.02 Zn, 104.2 As, 149.54 Cu and 162.68 Ni mg/g, respectively. Hence, we suggest that the calcite obtain from the human urine will be a suitable absorbent for heavy metal(loid)s removal from aqueous solution.

Relationship Between Soil Properties and Tip Burn of Chinese Chive Cultivated in Plastic Film House (시설재배 부추 잎끝마름증 발생에 영향을 미치는 토양특성)

  • Seo, Young-Jin;Choi, Young-Seub;Park, Jun-Hong;Kweon, Tae-Young;Choi, Seong-Yong;Kim, Chan-Yong;Kim, Jong-Su;Park, So-Deuk;Park, Man;Jeon, Sang-Ho;Jang, Yong-Sun;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.380-386
    • /
    • 2011
  • Tip burn has been reported as one of the most serious physiological disorder in Chinese chives (Allium tuberosum Rottl.) cultivated in plastic film house. In this study, a physiography and chemical properties of 132 plastic film house soils were investigated to elucidate factors affecting tip burn symptom. Also influence of soil properties on tip burn was statistically determined by path analysis and association analysis including a chi-square test or logistics analysis. Probability distribution of inorganic aqueous species, such as ammonia (g) was calculated using MINTEQ program. Soil order and chemical properties, especially pH, exchangeable calcium and inorganic nitrogen, showed a significant relationship with tip burn of Chinese chives. Tip burn symptoms occur mainly in an alkaline soil classified as Alfisols. Result of linear regression and path analysis exhibited that formation of ammonia (g) from soil solution depend upon soil pH and were associated with ammonium resulting from soil organic matter or nitrate. These results indicate that tip burn symptom of Chinese chives is directly affected by ammonia gas originated from alkaline soil condition.

Analysis of Contributing Factor for Cation Ratio to Calcium in Nutrient Solution on the Incidence of Blossom-end Rot in Sweet Pepper 'RZ208' Grown in Hydroponics (파프리카 배꼽썩음과 발생에 미치는 배양액 내 칼슘에 대한 양이온 기여인자 분석)

  • Lee, Hye-Jin;Oh, Jeong-Sim;Choi, Ki-Young;Lee, Yong-Beom;Bae, Jong-Hyang;Rhee, Han-Cheol;Kim, Dong-Eok
    • Horticultural Science & Technology
    • /
    • v.30 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • This study aimed to investigate the responses of plant growth and blossom-end rot (BER) incidence to calcium (Ca) and its three kinds of antagonistic cations (K, Mg, and $NH_4$-N) with various ratios in nutrient solution for sweet paper (Capsicum annuum L. 'RZ208'). Both Ca to each cation and Ca to a series of cation combinations, such as potassium (K), ammonium nitrate ($NH_4$), or magnesium (Mg) were more influential to the fruit growth and quality than plant growth. Especially, the BER incidence was significantly influenced by the ratio treatments. For examples, when Ca:(K + Mg) or Ca:(K + Mg + $NH_4$) ratio was 1:2 the highest incident rate of BER about 70.3 or 86.3% was observed, lowering the marketable yield to 19 or 13.7% of the total yield, respectively. The correlation coefficiencies (= r) to relationships between the BER and K as well as BER and $NH_4$ were 0.82 (P < 0.05) and 0.65 (P < 0.05), respectively. Combination only with the Mg element was not correlated with the BER incidence. However, when both of the K and Mg concentrations were 0.65 (P < 0.05). The highest correlation coefficiency, 0.92 (P < 0.05), was found to a relationship between the BER and the tree elemental combination.