• Title/Summary/Keyword: Calcium Influx

Search Result 226, Processing Time 0.027 seconds

Effects of External $Ca^{2+}$ ana the Inhibition of Na-pump on the Vanadate-induced Contraction in the Isolated Human and Rat Uterine Smooth Muscle (사람 및 흰쥐의 자궁근에서 Vanadate에 의한 수축에 미치는 외부 Calcium 및 Na-pump억제의 영향)

  • Jung, Jin-Sub;Han, Bok-Ki;Woo, Jae-Suk;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.18 no.2
    • /
    • pp.125-137
    • /
    • 1984
  • The effects of external $Ca^{2+}$ ana the inhibition of Na-pump on vanadate-induced contraction in isolated human and rat uterine smooth muscle were studied and the following results were observed. 1) Vanadate induced contraction in rat uterine muscle and showed maximal contraction at concentration of $5{\times}10^{-4}$M, and the contractile response to vanadate was more sensitive in human than rat uterine muscle. 2) Vanadate-induced contraction was not completely inhibited by $Ca^{2+}$ removal from PSS and the response to $Ca^{2+}$ removal was more sensitive in human than rat uterine muscle. 3) Vanadate-induced contraction decreased with increasing concentration of verapamil, but even in the presence of $3{\times}10^{-5}M$ verapamil which inhibited 100 K-induced contraction completely. about 40% of maximal contraction remained, and its amplitude was similar to that of contraction in $Ca^{2+}$-free solution. 4) Vanadate-induced contraction was increased by the inhibition of Na-pump and this increase also could be observed in the presence of $3{\times}10^{-5}M$ verapamil. 5) After pretreatment with $Ca^{2+}$-free PSS containing ouabain Vanadate-induced contraction was not increased, but the contractile response of these tissues to the addition of external $Ca^{2+}$ was remarkably increased in the presence of vanadate. 6) $3{\times}10^{-5}$M verapamil inhibited vanadate-induced $Ca^{45}$ influx completely, but after pretreatment with ouabain vanadate could induce remarkable $Ca^{45}$ influx even in the presence of verapmil. 7) With increasing the time of pretreatment with ouabain or $K^+$-free solution, the degree of increase in contraction by vanadate was more remarkable. 8) $10^{-4}M$ papaverine stowed a considerable inhibition of the increase in the vanadate-induced contraction by pretreatment with ouabain. 9) Acetylcholine-induced contraction increased with lengthening the duration of Na-pump inhibition even in the presence of verapamil. Considering above results it seems that the uterine muscle of human is more sensitive to vanadate than that of rat, and both internal and external $Ca^{2+}$ is utilized in vanadate·induced contraction. In the case of Na-pump inhibition several smooth muscle contracting agents seems to induce $Ca^{2+}$ influx which is not inhibited by verapamil. This $Ca^{2+}$ influx seems to be inhibited by papaverine and to be associated with membrane potential, although its precise characteristics is not certain.

  • PDF

EFFECT OF OCTANOL, THE GAP JUNCTION BLOCKER, ON THE REGULATION OF FLUID SECRETION AND INTRACELLULAR CALCIUM CONCENTRATION IN SALIVARY ACINAR CELLS (흰쥐 악하선 세포에서 gap junction 봉쇄제인 octanol이 타액분비 및 세포내 $Ca^{2+}$ 농도 조절에 미치는 영향)

  • Lee, Ju-Seok;Seo, Jeong-Taeg;Lee, Syng-Il;Lee, Jong-Gap;Sohn, Heung-Kyu
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.399-415
    • /
    • 1999
  • From bacteria to mammalian cells, one of the most important mediators of intracellular signal transduction mechanisms which regulate a variety of intracellular processes is free calcium. In salivary acinar cells, elevation of intracellular calcium concentration ($[Ca^{2+}]_i$) is essential for the salivary secretion induced by parasympathetic stimulation. However, in addition to $[Ca^{2+}]_i$, gap junctions which couple individual cells electrically and chemically have also been reported to regulate enzyme secretion in pancreatic acinar cells. Since the plasma membrane of salivary acinar cells has a high density of gap junctions, and these cells are electrically and chemically coupled with each other, gap junctions may modulate the secretory function of salivary glands. In this respect, I planned to investigate the role of gap junctions in the modulation of salivary secretion and $[Ca^{2+}]_i$, using mandibular salivary glands of rats. In order to measure the salivary flow rate, fluid was collected from the cannulated duct of the isolated perfused rat mandibular glands at 2 min intervals. $[Ca^{2+}]_i$, was measured from the cells loaded with fura-2 by spectrofluorometry. The results obtained were as follows: 1. CCh-induced salivary secretion was reversibly inhibited by 1 mM octanol, a gap junction blocker. 2. CCh-induced increase in $[Ca^{2+}]_i$, was also reversed by the application of 1 mM octanol. 3. Octanol did not block the initial increase in $[Ca^{2+}]_i$ caused by CCh, which suggested that the reduction of $[Ca^{2+}]_i$, caused by gap junction blockade was not resulted from the inhibition of $Ca^{2+}$ release from intracellular $Ca^{2+}$ stores. 4. Addition of octanol during stimulation with $1{\mu}M$ thapsigargin, a potent microsomal ATPase inhibitor, reduced $[Ca^{2+}]_i$, to the basal level. This suggested that inhibition of gap junction permeability closed plasma membrane $Ca^{2+}$ channels. 5. 2,5-di-tert-butyl-1,4-benzohydroquinone (TBQ) generated $[Ca^{2+}]_i$ oscillations resulting from periodic influx of $Ca^{2+}$ via plasma membrane. The TBQ-induced $[Ca^{2+}]_i$ oscillations were stopped by the application of 1mM octanol which implicated that gap junctions modulate the permeability of plasma membrane $Ca^{2+}$ channels. 6. Glycyrrhetinic acid, another well known gap junction blocker, also inhibited CCh-induced salivary secretion from rat mandibular glands. These results suggested that gap junctions play an important role in the modulation of fluid secretion from the rat mandibular glands and this was probably due to the inhibition of $Ca^{2+}$ influx through the plasma membrane $Ca^{2+}$ channels.

  • PDF

Vasodilating Mechanism of Dibutyryl-cAMP and Forskolin in Rabbit Aorta (Dibutyryl-cyclic AMP와 Forskolin의 혈관평활근 이완작용)

  • Ahn, Hee-Yul;Lim, Jung-Kyoo
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.127-133
    • /
    • 1990
  • Dibutyryl-cyclic AMP (db-cAMP) and forskolin were used to investigate vasodilating mechanism of cAMP in rabbit aorta. Db-cAMP and forskolin inhibited the development of contractile tension induced by norepinephrine (NE) concentration-dependently. However, high $K{^+}-induced$ contractile tension was inhibited less effectively by db-cAMP and forskolin. Db-cAMP and forskolin inhibited $^{45}Ca^{2+}$ uptake increased by NE. Forskolin seemed to inhibit $^{45}Ca^{2+}$ uptake increased by high $K{^+}$, but this inhibition was not significant statistically. Db-cAMP inhibited $Ca^{2+}-transient$ contraction by NE in $Ca^{2+}-free$ solution. In conclusion, it seems that cAMP blocks $Ca^{2+}$ influx through receptor operated $Ca^{2+}$ channels (ROCs), but that the effect of cAMP on $Ca^{2+}$ influx through voltage gated $Ca^{2+}$ channels (VGCs) is not clear in this experiment. Furthermore, cAMP is likely to inhibit calcium release from the intracellular stores.

  • PDF

Relaxation Effects of Rubus coreanus in Isolated Rabbit Corpus Cavernosum Smooth Muscle (복분자(覆盆子)의 토끼 음경해면체 평활근 이완효과)

  • Park, Sun Young;Lee, Pyeng Jae;Shin, Seon Mi;Kim, Ho Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.400-408
    • /
    • 2013
  • This study aimed to investigate the relaxation effects and its underlying mechanisms of Rubus coreanus(RC) extract in contracted rabbit corpus cavernous tissues by phenylephrine(PE) $1{\mu}M$. In order to define the relaxation effects of RC, rabbit corpus cavernous tissues were prepared in $2{\times}2{\times}6mm$ sized strip. The dose-dependent relaxation responses of RC at 0.01-3.0 $mg/m{\ell}$ in contracted strips induced by PE were measured and also observed after endothelial denudation. To analyze the underlying mechanisms of RC-induced relaxation, indomethacin(IM), tetraethylammonium chloride(TEA), $N{\omega}$-nitro-L-arginine (L-NNA), methylene blue(MB) were treated before RC extract infused into precontracted strips induced by PE. To study the effect of RC extract on influx of extracellular $Ca^{2+}$ in corpus cavernous strips, calcium chloride(Ca) 1 mM infused into precontracted strips induced by PE after pretreatment of RC extract in $Ca^{2+}$-free krebs-ringer solution. To investigate cytotoxic activity and nitric oxide(NO) concentration of RC extract on human umbilical vein endothelial cell(HUVEC), cell viability on HUVEC was measured by MTT assay, and NO concentration was measured by Griess reagent system. The cavernous strips were significantly relaxed by RC extract at 1.0 $mg/m{\ell}$, 3.0 $mg/m{\ell}$ and the relaxation responses to RC were inhibited significantly by endothelial disruption. The pretreatment of IM, TEA didn't affect RC extract-induced endothelium-dependent relaxation, but the pretreatment of L-NNA, MB reduced RC extract-induced endothelium-dependent relaxation. When $Ca^{2+}$ was supplied the cavernous strips which were precontracted by PE in a $Ca^{2+}$-free krebs-ringer solution, contraction of strips was increased, but pretreatment of RC inhibited contractile response to $Ca^{2+}$. When RC extract was applicated on HUVEC, NO concentration was increased. Our findings show that RC extract exerts a relaxing effect on corpus cavernosum in part by suppressing influx of extracellular $Ca^{2+}$ through activating the NO-cGMP system.

Purinergic regulation of calcium signaling and exocytosis in rat prostate neuroendocrine cells

  • Kim, Jun-Hee;Kim, Mean-Hwan;Koh, Duk-su;Park, So-Jung;Kim, Soo-Jung;Nam, Joo-Hyun;Lee, Jee-Eun;Uhm, Dae-Yong;Kim, Sung-Joon
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.54-54
    • /
    • 2003
  • Prostate gland contains neuroendocrine cells (PNECs) are playing important roles in physiological and pathophysiological processes of the prostate gland. Here, we investigated the role of purinoceptors in PNECs freshly isolated from rat ventral prostate (RPNECs) that show immunoreactivity to chromogranin A. Fura-2 ratiometry revealed that ATP evokes both fast Ca$\^$2+/ influx and store Ca$\^$2+/ release in RPNECs. A whole-cell patch clamp study demonstrated fast inactivating cationic current activated by ATP or by ${\alpha}$,${\beta}$-MeATP, which was blocked by ATP-TNP. The activation of P2X inward current was tightly associated with a sharp increase in [Ca$\^$2+/]$\sub$c/. The presence of P2X1/3 subtypes were proved by RT-PCR analysis. For the stored Ca$\^$2+/ release, ATP and UTP showed similar effects, suggesting the dominant role or P2Y2 subtypes, also confirmed by RT-PCR. Both P2X (${\alpha}$,${\beta}$-MeATP) and P2Y (UTP) stimulation induced changes in the cell morphology (initial shrinkage and blob formation on the surface) reversibly. Exocytotic membrane trafficking events were monitored with the membrane-bound fluorescent dye, FM1-43 using confocal microscopy. In spite of the similar Ca$\^$2+/ responses, UTP was far less effective in triggering exocytosis than ${\alpha}$,${\beta}$ -MeATP. Since serotonin is reportedly stored in the secretory granule of PNECs, we directly examined whether the aforementioned agonists elicit release of serotonin using carbon fiber electrode-amperometry. In accordance with the results of FM1 -43 experiments, ${\alpha}$,${\beta}$-MeATP efficiently evoke serotonin secretion while not with UTP. In summary, the P2X-mediated Ca$\^$2+/ influx plays crucial roles in the exocytosis of RPNECs. Although a global increase in [Ca$\^$2+]$\sub$c/ might be related with the morphological changes, a sharp rise of [Ca$\^$2+/]$\sub$c/ in the putative sub-plasmalemmal ‘microdomains’ might be a decisive factor for the exocytosis.

  • PDF

Endothelium-Dependent Vasorelaxation Effects of DangGuiSu-San, SamHwangSaSim-Tang extract on Rabbit Carotid Artery (당귀수산과 삼황사심탕의 혈관이완효과)

  • Ko, Heung;Shin, Seon Mi;Park, Sun Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.4
    • /
    • pp.198-206
    • /
    • 2019
  • This study was conducted to evaluate the vasorelaxant effect of DangGuiSu-San and SamHwangSaSim-Tang extract on contracted rabbit carotid artery. To study the effect of DangGuiSu-San and SamHwangSaSim-Tang extract on contracted rabbit carotid arterial strips, arterial strips with intact or damaged endothelium were used for experiment using organ bath. The pre-contracted arterial strips with Phenylephrine(PE) was treated with various concentrations of DangGuiSu-San and SamHwangSaSim-Tang extract(0.01, 0.03, 0.1, 0.3 and $1.0mg/m{\ell}$). To determine the mechanisms of DangGuiSu-San and SamHwangSaSim-Tang-induced vasorelaxant, DangGuiSu-San and SamHwangSaSim-Tang extract were infused into contracted arterial rings which had been pretreated by indomethacin(IM), tetraethylammonium chloride(TEA), $N{\omega}$-nitro-L-arginine ($_L-NNA$), methylene blue(MB). And calcium chloride(Ca) 1 mM was infused into precontracted arterial ring induced by PE after treatment of DangGuiSu-San and SamHwangSaSim-Tang extract in $Ca^{2+}$-free krebs solution. DangGuiSu-San and SamHwangSaSim-Tang extract revealed significant relaxation on PE-induced arterial contraction. DangGuiSu-San and SamHwangSaSim-Tang extract also had an effective relaxation to the intact endothelium arterial ring. SamHwangSaSim-Tang extract on contracted rabbit carotid artery is related with NO-cGMP pathway. Pretreatment of DangGuiSu-San and SamHwangSaSim-Tang extract inhibited the contraction by influx of extracellular $Ca^{2+}$ in contracted arterial ring induced by NE. This study indicated that the relaxation effect of SamHwangSaSim-Tang extract on contracted rabbit carotid artery is related with NO-cGMP pathway. Pretreatment of DangGuiSu-San and SamHwangSaSim-Tang extract inhibited the contraction by influx of extracellular $Ca^{2+}$ in contracted arterial ring induced by NE.

Relaxation Effects of Nelumbinis Semen in Isolated Corpus Cavernosum (연자육이 음경해면체 이완에 미치는 영향)

  • Park, Sun Young;Kim, Jin Taek;Kim, Ho Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.180-188
    • /
    • 2015
  • This study was conducted to investigate the relaxation effects and its mechanisms of Nelumbinis Semen(NS) extract in isolated rabbit corpus cavernous tissues. In order to examine the relaxation effects and its mechanisms of NS, we treated the ethanol extract of NS(0.01-3.0 mg/ml) and indomethacin(IM), tetraethylammonium chloride(TEA), Nω -nitro-L-arginine (L-NNA), methylene blue(MB) were treated before NS extract to contracted strips induced by PE 1 μM. We also treated calcium chloride(Ca) 1 mM after pretreatment of NS extract in Ca2+-free krebs-ringer solution to contracted strips induced by PE. Cell viability and NO concentration on human umbilical vein endothelial cell(HUVEC) was measured by MTT assay, Griess reagent system. eNOS production was investigated by histochemical and immunohistochemical staining. NS extract was significantly affected on the relaxation of cavernous strips and NS extract-induced relaxation was not different by pretreatment of IM, TEA, MB, but inhibited by the pretreatment of L-NNA. And increase of contraction induced by Ca2+ addition, in a Ca2+-free solution, was decreased by pretreatment of NS. NO concentration on HUVEC was increased. When NS extract was applicated on corpus cavernosum of penis(CCP) in SHR, ratio of smooth muscles to collage fibers by PE was decreased and formation of eNOS around helicine artery was increased. These results suggest that CCP relaxation effects of NS extract are shown by suppressing influx of extracellular Ca2+ through the production of NO and eNOS.

Presynaptic Mechanism Underlying Regulation of Transmitter Release by G Protein Coupled Receptors

  • Takahashi, Tomoyuki;Kajikawa, Yoshinao;Kimura, Masahiro;Saitoh, Naoto;Tsujimoto, Tetsuhiro
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.69-76
    • /
    • 2004
  • A variety of G protein coupled receptors (GPCRs) are expressed in the presynaptic terminals of central and peripheral synapses and play regulatory roles in transmitter release. The patch-clamp whole-cell recording technique, applied to the calyx of Held presynaptic terminal in brainstem slices of rodents, has made it possible to directly examine intracellular mechanisms underlying the GPCR-mediated presynaptic inhibition. At the calyx of Held, bath-application of agonists for GPCRs such as $GABA_B$ receptors, group III metabotropic glutamate receptors (mGluRs), adenosine $A_1$ receptors, or adrenaline ${\alpha}2$ receptors, attenuate evoked transmitter release via inhibiting voltage-activated $Ca^{2+}$ currents without affecting voltage-activated $K^+$ currents or inwardly rectifying $K^+$ currents. Furthermore, inhibition of voltage-activated $Ca^{2+}$ currents fully explains the magnitude of GPCR-mediated presynaptic inhibition, indicating no essential involvement of exocytotic mechanisms in the downstream of $Ca^{2+}$ influx. Direct loadings of G protein ${\beta}{\gamma}$ subunit $(G{\beta}{\gamma})$ into the calyceal terminal mimic and occlude the inhibitory effect of a GPCR agonist on presynaptic $Ca^{2+}$ currents $(Ip_{Ca})$, suggesting that $G{\beta}{\gamma}$ mediates presynaptic inhibition by GPCRs. Among presynaptic GPCRs glutamate and adenosine autoreceptors play regulatory roles in transmitter release during early postnatal period when the release probability (p) is high, but these functions are lost concomitantly with a decrease in p during postnatal development.

Apoptosis Induced by Adenosine 5'-triphosphate in Mouse Leukemic Cells (Mouse Leukemia 세포에서 Adenosine 5'-triphosphate에 의한 Apoptosis)

  • Joo, Nan-Young;Park, Kyu-Sang;Chung, Hae-Sook;Kong, In-Deok;Lee, Joong-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.817-824
    • /
    • 1997
  • Extracellular ATP elicits various biological responses and plays a significant role in physiological regulation. Recently, ATP-induced growth inhibitions were reported in some tumor cell lines, but these effects and mechanisms are not well hewn. This study was conducted to investigate ATP-induced growth inhibition in mouse $leukemic(P388D_1)$ cells. ATP inhibited cell growth in a dose-dependent manner as analyzed by MTS assay$(IC_{50}: 33.1\;{\mu}M)$. Nucleotides other than ATP, such as ADP$(37.5;{\mu}M)$ and AMP$(33.2;{\mu}M)$ had the same effects as ATP but adenosine$(57.8;{\mu}M)$ showed less effect than ATP. ATP attenuated the cells in $G_0/G_l\;and\;G_2/M$ phases but increased those in S phase in flow cytometric analysis. Hypodiploid cells$(A_0)$, the presumptive findings of apoptosis, were found among the ATP-treated cells. ATP induced DNA fragmentation into $180{\mu}200\;bps $as measured by electrophoresis. some apoptotic cells were stained by TUNEL method. ATP increased the intracellular free $Ca^{++}$concentration$([Ca^{++}]_i)$ and the increment of $([Ca^{++}]_i)$ was caused by influx from the extracellular space. These results suggest that extracellular ATP induces growth inhibition through apoptosis.

  • PDF

Contractile Effects of Hemoglobin-Free Human Cerebrospinal Fluid on Isolated Porcine Cerebral Arteries

  • Baik, Yung-Hong;Kang, Seon-Young;Kook, Hyun;Chyung, Sang-Keun;Kook, Young-Johng;Kang, Sam-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.193-199
    • /
    • 1998
  • To elucidate the mechanism involved in the cerebral vascular spasm following subarachnoid hemorrhage (SAH), the effects of the cerebrospinal fluid (CSF) obtained from the SAH patients on the resting tension and its influence on the contractile responses to various vasoactive agents and to hypoxia were investigated in isolated porcine cerebral arteries. All the CSFs containing hemoglobin (Hb) produced contraction and some Hb-free CSFs also elicited contraction. When the Hb-free CSF was separated by microfilter, the filtrate of <30,000 MW did not produce contraction, while the fraction above 30,000 MW elicited more marked contractile responses than the unfractionated CSF. The CSF contraction was significantly attenuated in the presence of indomethacin or nimodipine, whereas the contractions induced by KCl, prostaglandin $F_{2{\alpha}}$ ($PGF_{2{\alpha}}$), or endothelin-1 (ET-1) were not affected by the CSF pretreatment. However, the contractile responses induced by 5-hydroxytryptamine (5-HT) and phenylephrine (PE) were markedly potentiated by the pretreatment. Hypoxia-induced vasoconstriction was significantly potentiated by the pretreatment with either unfractionated CSF or the CSF fraction of above 30,000 MW. These results suggest that unknown vasocontractile substance(s) exists in the Hb-free CSF and that the substance, with its MW above 30,000, is activated by hypoxia and acts synergistically with 5-HT and PE, and that extracellular calcium influx and cyclooxygenase are also involved in the cerebral vasoconstrictory effect of Hb-free CSF.

  • PDF