• Title/Summary/Keyword: Calabi-Yau threefolds

Search Result 4, Processing Time 0.017 seconds

CALABI-YAU THREEFOLDS FROM BUILDING BLOCKS OF G2-MANIFOLDS

  • Lee, Nam-Hoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.331-335
    • /
    • 2017
  • We construct Calabi-Yau threefolds by smoothing normal crossing varieties, which are made from the building blocks of $G_2-manifolds$. We compute the Hodge numbers of those Calabi-Yau threefolds. Some of those Hodge number pairs ($h^{1,1}$, $h^{1,2}$) do not overlap with those of Calabi-Yau threefolds constructed in the toric setting.

SMOOTH, ISOLATED CURVES IN FAMILIES OF CALABI-YAU THREEFOLDS IN HOMOGENEOUS SPACES

  • Knutsen, Andreas Leopold
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1033-1050
    • /
    • 2013
  • We show the existence of smooth isolated curves of different degrees and genera in Calabi-Yau threefolds that are complete intersections in homogeneous spaces. Along the way, we classify all degrees and genera of smooth curves on BN general K3 surfaces of genus ${\mu}$, where $5{\leq}{\mu}{\leq}10$. By results of Mukai, these are the K3 surfaces that can be realised as complete intersections in certain homogeneous spaces.

Some Siegel Threefolds with a Calabi-Yau Model II

  • Freitag, Eberhard;Manni, Riccardo Salvati
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.2
    • /
    • pp.149-174
    • /
    • 2013
  • In a previous paper, we described some Siegel modular threefolds which admit a Calabi-Yau model. Using a different method we give in this paper an enlarged list of such varieties. Basic for this method is a paper of van Geemen and Nygaard. They study a variety $\mathcal{X}$ that is the complete intersection of four quadrics in $\mathbb{P}^7(\mathbb{C})$. This is biholomorphic equivalent to the Satake compactification of $\mathcal{H}_2/{\Gamma}^{\prime}$ for a certain subgroup ${\Gamma}^{\prime}{\subset}Sp(2,\mathbb{Z})$ and it will be the starting point of our investigation. It has been pointed out that a (projective) small resolution of this variety is a rigid Calabi-Yau manifold $\tilde{\mathcal{X}}$. Then we will consider the action of quotients of modular groups on $\mathcal{X}$ and study possible resolutions that admits a Calabi-Yau model in the category of complex spaces.