• Title/Summary/Keyword: Cajal Cell

Search Result 45, Processing Time 0.013 seconds

Neonatal Intestinal Pseudo-obstruction Associated with Deficiency of the Interstitial Cells of Cajal in a Premature Infant (카할세포 결핍과 연관된 미숙아 가성 장폐쇄 1례)

  • Lee, Soo-Jung;Lee, Woo-Ryoung
    • Neonatal Medicine
    • /
    • v.15 no.2
    • /
    • pp.196-199
    • /
    • 2008
  • The interstitial cells of Cajal are the pacemakers in the gastrointestinal tract that modulate gastrointestinal motility. A case of a neonate with intestinal pseudo-obstruction caused by a decreased number of the interstitial cells of Cajal is presented. A premature male infant born at 32 weeks of gestation showed progressive abdominal distention beginning 3 days after initiation of enteral feeding at 15 days of life. No etiologic factors were identified on radiologic studies, a gastrographin enema, and an intestinal biopsy other than a markedly decreased number of the intestinal cells of Cajal. An ileostomy, followed by repair of the ileostomy was done, which resulted in but a limited improvement of the abdominal gas pattern. Respiratory distress, pancytopenia, and abdominal distention persisted, and the infant expired on 142 days of life.

Immunohistochemical localization of galectin-3 in the brain with Theiler's murine encephalomyelitis virus (DA strain) infection

  • Shin, Taekyun;Carrillo-Salinas, Francisco J.;Martinez, Ana Feliu;Mecha, Miriam;Guaza, Carmen
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.3
    • /
    • pp.159-162
    • /
    • 2013
  • Galectin-3 is a ${\beta}$-galactoside-binding lectin that plays a role in neuroinflammation through cell migration, proliferation, and apoptosis. In the present study, regulation of galectin-3 was examined in the brain of mice infected with the Daniel strain of Theiler's murine encephalomyelitis virus (TMEV) at days 7 and 81 post-infection by immunohistochemistry. Immunohistochemistry revealed that galectin-3 was mainly localized in ionized calcium-binding adapter 1-positive macrophages/activated microglia, but not in Iba-1-positive ramified microglia. Galectin-3 was also weakly detected in some astrocytes in the same encephalitic lesions, but not in neurons and oligodendrocytes. Collectively, the present findings suggest that galectin-3, mainly produced by activated microglia/macrophages, may be involved in the pathogenesis of virus induced acute inflammation in the early stage as well as the chronic demyelinating lesions in Daniel strain of TMEV induced demyelination model.

Effects of Samchulkunbi-tang in Cultured Interstitial Cells of Cajal of Murine Small Intestine

  • Kim, Jung Nam;Kwon, Young Kyu;Kim, Byung Joo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.112-117
    • /
    • 2013
  • We studied the modulation of pacemaker activities by Samchulkunbi-tang (SCKB) in cultured interstitial cells of Cajal (ICC) from murine small intestine with the whole-cell patch-clamp technique. Externally applied SCKB produced membrane depolarization in the current-clamp mode. The pretreatment with $Ca^{2+}$-free solution and thapsigargin, a $Ca^{2+}$-ATPase inhibitor in endoplasmic reticulum, abolished the generation of pacemaker potentials and suppressed the SCKB-induced action. The application of flufenamic acid (a nonselective cation channel blocker) abolished the generation of pacemaker potentials by SCKB. However, the application of niflumic acid (a chloride channel blocker) did not inhibit the generation of pacemaker potentials by SCKB. In addition, the membrane depolarizations were inhibited by not only GDP-${\beta}$-S, which permanently binds G-binding proteins, but also U-73122, an active phospholipase C inhibitor. These results suggest that SCKB modulates the pacemaker activities by nonselective cation channels and external $Ca^{2+}$ influx and internal $Ca^{2+}$ release via G-protein and phospholipase C-dependent mechanism. Therefore, the ICC are targets for SCKB and their interaction can affect intestinal motility.

Modulation of Pacemaker Potentials by Pyungwi-San in Interstitial Cells of Cajal from Murine Small Intestine - Pyungwi-San and Interstitial Cells of Cajal -

  • Kim, Jung Nam;Song, Ho Jun;Lim, Bora;Kwon, Young Kyu;Kim, Byung Joo
    • Journal of Pharmacopuncture
    • /
    • v.16 no.1
    • /
    • pp.43-49
    • /
    • 2013
  • Objective: Pyungwi-san (PWS) plays a role in a number of physiologic and pharmacologic functions in many organs. Interstitial cells of Cajal (ICCs) are pacemaker cells that generate slow waves in the gastrointestinal (GI) tract. We aimed to investigate the beneficial effects of PWS in mouse small-intestinal ICCs. Methods: Enzymatic digestion was used to dissociate ICCs from the small intestine of a mouse. The whole-cell patch-clamp configuration was used to record membrane potentials from the cultured ICCs. Results: ICCs generated pacemaker potentials in the GI tract. PWS produced membrane depolarization in the current clamp mode. Pretreatment with a $Ca^{2+}$-free solution and a thapsigargin, a $Ca^{2+}$-ATPase, inhibitor in the endoplasmic reticulum, eliminated the generation of pacemaker potentials. However, only when the thapsigargin was applied in a bath solution, the membrane depolarization was not produced by PWS. Furthermore, the membrane depolarizations due to PWS were inhibited not by U-73122, an active phospholipase C inhibitor, but by chelerythrine and calphostin C, protein kinase C inhibitors. Conclusions: These results suggest that PWS might affect GI motility by modulating the pacemaker activity in the ICCs.

Involvement of D2 Receptor on Dopamine-induced Action in Interstitial Cells of Cajal from Mouse Colonic Intestine

  • Zuoa, Dong Chuan;Shahia, Pawan Kumar;Choia, Seok;Jun, Jae-Yeoul;Park, Jong-Seong
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.218-226
    • /
    • 2012
  • Dopamine is an enteric neurotransmitter that regulates gastrointestinal motility. This study was done to investigate whether dopamine modulates spontaneous pacemaker activity in cultured interstitial cells of Cajal (ICCs) from mouse using whole cell patch clamp technique, RT-PCR and live $Ca^{2+}$ imaging analysis. ICCs generate pacemaker inward currents at a holding potential of -70 mV and generate pacemaker potentials in current-clamp mode. Dopamine did not change the frequency and amplitude of pacemaker activity in small intestinal ICCs. On the contrary dopamine reduced the frequency and amplitude of pacemaker activity in large intestinal ICCs. RT-PCR analysis revealed that Dopamine2 and 4-receptors are expressed in c-Kit positive ICCs. Dopamine2 and 4 receptor agonists inhibited pacemaker activity in large intestinal ICCs mimicked those of dopamine. Domperidone, dopamine2 receptor antagonist, increased the frequency of pacemaker activity of large intestinal ICCs. In $Ca^{2+}$-imaging, dopamine inhibited spontaneous intracellular $Ca^{2+}$ oscillations of ICCs. These results suggest that dopamine can regulate gastrointestinal motility through modulating pacemaker activity of large intestinal ICCs and dopamine effects on ICCs are mediated by dopamine2 receptor and intracellular $Ca^{2+}$ modulation.

Shengmaisan Regulates Pacemaker Potentials in Interstitial Cells of Cajal in Mice

  • Kim, Byung Joo
    • Journal of Pharmacopuncture
    • /
    • v.16 no.4
    • /
    • pp.36-42
    • /
    • 2013
  • Objectives: Shengmaisan (SMS) is a traditional Chinese medicine prescription widely used for the treatment of diverse organs in Korea. The interstitial cells of Cajal (ICCs) are pacemaker cells that play an important role in the generation of coordinated gastrointestinal (GI) motility. We have aimed to investigate the effects of SMS in the ICCs in the mouse small intestine. Methods: To dissociate the ICCs, we used enzymatic digestions from the small intestine in a mouse. After that, the ICCs were identified immunologically by using the anti-c-kit antibody. In the ICCs, the electrophysiological whole-cell patch-clamp configuration was used to record pacemaker potentials in the cultured ICCs. Results: The ICCs generated pacemaker potentials in the mouse small intestine. SMS produced membrane depolarization with concentration-dependent manners in the current clamp mode. Pretreatment with a $Ca^{2+}$ free solution and thapsigargin, a $Ca^{2+}$-ATPase inhibitor in the endoplasmic reticulum, stopped the generation of the pacemaker potentials. In the case of $Ca^{2+}$-free solutions, SMS induced membrane depolarizations. However, when thapsigargin in a bath solution was applied, the membrane depolarization was not produced by SMS. The membrane depolarizations produced by SMS were inhibited by U-73122, an active phospholipase C (PLC) inhibitors. Furthermore, chelerythrine and calphostin C, a protein kinase C (PKC) inhibitors had no effects on SMS-induced membrane depolarizations. Conclusions: These results suggest that SMS might affect GI motility by modulating the pacemaker activity through an internal $Ca^{2+}$- and PLC-dependent and PKC-independent pathway in the ICCs.

Effects of Carthami Flos on Interstitial Cells of Cajal in the Gastrointestinal Tract (홍화가 위장관 카할간질세포에 미치는 효과)

  • Song, Ho-Joon;Kim, Jung-A;Han, Song-Ee;Kim, Hyung-Woo;Chae, Han;Kim, Byung-Joo;Kwon, Young-Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.603-607
    • /
    • 2011
  • The purpose of this study is to investigate the effects of Carthami Flos on interstitial cells of Cajal in the gastrointestinal tract. Many regions of the tunica muscularis of the gastrointestinal (GI) tract display spontaneous contraction. These spontaneous contractions are mediated by periodic generation of electrical slow waves. Recent studies have shown that the interstitial cells of Cajal (ICCs) act as pacemakers and conductors of electrical slow waves in gastrointestinal smooth muscles. We investigated the cytotoxicity activity, antioxidant activity, and pacemaking activity. The cytotoxicity activity was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Antioxidant activities were determined by DPPH (1.1-diphenyl-2-picrylhydrazyl) radical scavenging capacity assay and DCFH-DA (2,7-dichlorofluorescein diacetate) method. The effects of Carthami Flos on the pacemaker potentials in cultured ICCs from murine small intestine were investigated by using whole-cell patch-clamp techniques at $30^{\circ}C$. The addition of Carthami Flos (5, 10, $30{\mu}g$/ml) depolarized the resting membrane potentials in a concentration dependent manner. These results suggest that the GI tract can be targets for Carthami Flos, and their interaction can affect intestinal motility.

Inhibition of Pacemaker Activity of Interstitial Cells of Cajal by Hydrogen Peroxide via Activating ATP-sensitive $K^+$ Channels

  • Choi Seok;Parajuli Shankar Prasad;Cheong Hyeon-Sook;Paudyal Dilli Parasad;Yeum Cheol-Ho;Yoon Pyung-Jin;Jun Jae-Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • To investigate whether hydrogen peroxide($H_2O_2$) affects intestinal motility, pacemaker currents and membrane potential were recorded in cultured interstitial cells of Cajal(ICC) from murine small intestine by using a whole-cell patch clamp. In whole cell patch technique at $30^{\circ}C$, ICC generated spontaneous pacemaker potential under current clamp mode(I=0) and inward currents(pacemaker currents) under voltage clamp mode at a holding potential of -70 mV. When ICC were treated with $H_2O_2$ in ICC, $H_2O_2$ hyperpolarized the membrane potential under currents clamp mode and decreased both the frequency and amplitude of pacemaker currents and increased the resting currents in outward direction under voltage clamp mode. Also, $H_2O_2$ inhibited the pacemaker currents in a dose-dependent manner. Because the properties of $H_2O_2$ action on pacemaker currents were same as the effects of pinacidil(ATP-sensitive $K^+$ channels opener), we tested the effects of glibenclamide(ATP-sensitive $K^+$ channels blocker) on $H_2O_2$ action in ICC, and found that the effects of $H_2O_2$ on pacemaker currents were blocked by co- or pre- treatment of glibenclamide. These results suggest that $H_2O_2$ inhibits pacemaker currents of ICC by activating ATP-sensitive $K^+$ channels.

Effects of Gamisoyo-san, Banhasasim-tang and Bojungikki-tang in Colonic Interstitial cells of Cajal in mice (생쥐 대장 카할세포에서 가미소요산, 반하사심탕 및 보중익기탕의 효과에 관한 비교연구 )

  • Na Ri Choi;Woo-Gyun Choi;Byung Joo Kim
    • Herbal Formula Science
    • /
    • v.32 no.1
    • /
    • pp.29-37
    • /
    • 2024
  • Objectives : The purpose of this study was to examine the effects of insurance herbal medicines on colonic interstitial Cells of Cajal (ICC) in mice. Methods : Among the insurance herbal medicines, we chose Gamisoyo-san (GSS), Banhasasim-tang (BHSST) and Bojungikki-tang (BGIKT). We made the ICC culture in large intestine in mice and used the electrophysiological method to record pacemaker potentials. Also we used MTT assay to check cell viability and examined the ICC protein expression by western blot. Results : 1. GSS (1-10 mg/ml) induced the pacemaker potential depolarization and decreased frequency with concentration-dependent manners in colonic ICC. EC50 is 2.99 mg/ml. BHSST (1-10 mg/ml) induced the pacemaker potential depolarization and decreased frequency with concentration-dependent manners in colonic ICC. EC50 is 2.76 mg/ml. BGIKT (1-10 mg/ml) induced the pacemaker potential depolarization and decreased frequency with concentration-dependent manners in colonic ICC. EC50 is 4.49 mg/ml. 2. GSS, BHSST and BGIKT had no effects on cell viability in colonic ICC. 3. GSS and BGIKT increased the Anoctamin-1 (ANO1) protein expression and BHSST increased the transient receptor potential melastatin-subfamily member 7 (TRPM7) protein expression in colonic ICC. Conclusions : These results suggest that GSS, BHSST, and BGIKT have shown the potential to regulate gastrointestinal (GI) motility by regulating colonic ICC and may show the potential to treat colon-derived GI diseases such as irritable bowel syndrome (IBS).

Recent Achievements in Stem Cell Therapy for Pediatric Gastrointestinal Tract Disease

  • Bae, Sun Hwan
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.16 no.1
    • /
    • pp.10-16
    • /
    • 2013
  • The field of stem cell research has been rapidly expanding. Although the clinical usefulness of research remains to be ascertained through human trials, the use of stem cells as a therapeutic option for currently disabling diseases holds fascinating potential. Many pediatric gastrointestinal tract diseases have defect in enterocytes, enteric nervous system cells, smooth muscles, and interstitial cells of Cajal. Various kinds of therapeutic trials using stem cells could be applied to these diseases. This review article focuses on the recent achievements in stem cell applications for pediatric gastrointestinal tract diseases.