• Title/Summary/Keyword: Cage-rotor induction generator

Search Result 16, Processing Time 0.033 seconds

Characteristics Analysis for Motor or Generator Operating of Induction Machine with Deep or Double Cage Rotor (심구 또는 이중 농형 회전자를 가진 유도기의 전동 또는 발전 운전시 특성 해석)

  • Kim, Jong-Gyeum
    • New & Renewable Energy
    • /
    • v.10 no.4
    • /
    • pp.3-8
    • /
    • 2014
  • Both of induction generator and synchronous generator is available in the hydroelectric power plant. If the output of the power station is large, the synchronous generator is mainly used but when its output is low, the induction generator is often used. If the output capacity is small, there is a case in which induction motor is used as a generator. Torque at rated operation and start of the induction motor is different depending on the shape of the rotor. Small and medium-sized squirrel-cage induction motor is used primarily double cage rotor or deep bar. In this study, we attempt to interpret characteristics for double cage rotor or deep bar that occur when operating in the induction generator based on the parameters that have been designed and manufactured as an induction motor.

A Study on the Voltage Drop of Induction Generator along the Rotor Shape (회전자 형상에 따른 유도발전기 전압강하에 대한 연구)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.62-66
    • /
    • 2015
  • Induction generator is easy to durability and maintenance than the synchronous generator. So, recently Induction generator has been widely applied to small-scale hydroelectric power plant. When the rotor is operating faster than synchronous speed, induction machine can generate electric power. Induction generator has a large inrush currents, such as the starting current of the induction motor. Induction motor has been designed a variety of rotor shape in order to reduce starting current. Since the occurrence of high inrush current cause a voltage drop to the system, it will need to reduce possible. Because the starting current of the squirrel-cage induction motor varies in accordance with the rotor shape, it is necessary to analyze the magnitude of inrush current in order to apply to the generator. In this study, we analyzed the inrush current and the voltage drop caused in accordance with the rotor shape of 1500kw induction generator.

A Study on Operational Characteristics of Wind Turbine Induction Generators Interconnected with Distribution Networks Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 계통 연계 풍력 유도 발전기의 운전 특성에 관한 연구)

  • 장성일;정종찬;김광호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.704-713
    • /
    • 2002
  • This paper describes operational characteristics of wind turbine induction generators interconnected with distribution networks using PSCAD/EMTDC. Due to the simple and durable structure, induction generators are the most common type used in wind Power generation. Generally, induction generators are classified into two groups according to the shape of rotor, one is squirrel-cage type and the other is wound-rotor type. In this study, we simulate the start-up and the output variation of generators interconnected with distribution networks and compare the operational characteristics of squirrel -cage type and wound-rotor type induction generators located in the unfaulted distribution lines about the disturbance occurred on the associated distribution feeders emanated from the substation to which wind turbine generator is connected. In order to obtain the realistic results, we use the radial distribution network of IEEE 13-bus model.

Study on the Operating Characteristics of Double Fed Induction Generator Connected AC network (계통 연계형 권선형 유도발전기의 동작특성 연구)

  • Kim, Chan-Ki;Han, Sang-Yul;Choo, Jin-Boo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.247-257
    • /
    • 2006
  • This paper shows the comparison of operating characteristics between squirrel cage induction generator and DFIG(Double Fed Induction Generator). Because squirrel cage induction generator consume the reactive power due to magnetizing reactance, the capacitor is need to compensate the reactive power. Otherwise, two back-to-back PWM voltage-fed inverters connected between the stator and the rotor allow sub/super synchronous operation with low distortion currents. In this paper, the response characteristics of squirrel cage induction generator and DFIG, were analyzed and investigated using PSCAD/EMTDC.

Study on the Operating Characteristics of Double Fed Induction Generator Connected AC network (계통 연계형 권선형 유도발전기의 동작특성 연구)

  • Kim Chan-Ki;Park Jong-Kwang;Choi Young-Do;Lim Seong-Joo;Moon Hyoung-Bae
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.323-326
    • /
    • 2006
  • This paper shows the comparison of operating characteristics between squirrel cage induction generator and DFIG(Double Fed Induction Generator). Because squirrel cage induction generator consume the reactive power due to magnetizing reactance, the capacitor is need to compensate the reactive power. Otherwise, two back-to-back PWM voltage-fed inverters connected between the stator and the rotor allow sub/super synchronous operation with low distortion currents. In this paper, the response characteristics of squirrel cage induction generator and DFIG, were analyzed and investigated using PSCAD/EMTDC.

  • PDF

Sliding Mode Control of a New Wind-Based Isolated Three-Phase Induction Generator System with Constant Frequency and Adjustable Output Voltage

  • Moradian, Mohammadreza;Soltani, Jafar
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.675-684
    • /
    • 2016
  • This paper presents a new stand-alone wind-based induction generator system with constant frequency and adjustable output voltage. The proposed generator consists of a six-phase cage-rotor induction machine with two separate three-phase balanced stator windings and a three-phase space vector pulse width modulation inverter that operates as a static synchronous compensator (STATCOM). The first stator winding is fed by the STATCOM and used to excite the machine while the second stator winding is connected to the generator external load. The main frequency of the STATCOM is determined to be constant and equal to the load-requested frequency. The generator output frequency is independent of the load power demand and its prime mover speed because the frequency of the induced emf in the second stator winding is the same as this constant frequency. A sliding mode control (SMC) is developed to regulate the generator output voltage. A second SMC is used to force the zero active power exchanged between the machine and the STATCOM. Some simulation and experimental results are presented to prove the validity and effectiveness of the proposed generator system.

Characteristics Analysis of Induction Generator with a Change in Rotor Speed (회전속도 변화에 따른 유도발전기의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Kim, Il-Jung;Kim, Young-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2225-2229
    • /
    • 2011
  • Squirrel cage induction motor is the main driving system of industrial field and familiar with its use in a large variety of applications. However, many engineer are unfamiliar with the induction generator, even though no difference exists between both machines except for the mode of operation. But an induction generator is commonly used for micro & small hydro power applications due to its simplicity, reliability, low cost and robustness. Input and output of induction motor has turned against at the induction generator operation. Rotation speed of induction generator is small faster than induction motor. As output of induction machines increases with the increasement of speed, so loss is same. Actually, generator efficiency is lower than motor at this condition. If induction generator is connected with mechanical load, total efficiency is decreased. In this paper, we analyzed that input, output, torque and efficiency is different from each other above and below synchronous speed.

Excitation Characteristics Analysis of an Isolated Induction Generator by applying Vector Control (벡터제어에 의한 자립식 유도발전기의 여자특성 해석)

  • Lee Kyu-Min;Koo Tae-Man
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.896-898
    • /
    • 2004
  • The lagging reactive power should be supplied for the excitation of isolated squirrel-cage induction generators by external circuit. This paper deals with a technique to drive the equations for analysis of the excitation characteristics and performance of an isolated squirrel-cage induction generator from the conventional equivalent circuit of induction machine, transform the equations into d-q coordinates to use vector control technique, and carry out the simulation of an induction generator system with various conditions using MATLAB. The results of the simulation indicate that moderate reactive power can be controlled effectively to maintain constant voltage over a wide range of the rotor speeds and loads.

  • PDF

AC and DC Applications of Induction Generator Excited by Static VAR Compensator

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.169-179
    • /
    • 2004
  • This paper presents the steady-state analysis of the three-phase self-excited induction generator (SEIG). The three-phase SEIG with a squirrel cage rotor is driven by a variable-speed prime mover (VSPM) or a constant-speed prime mover (CSPM) such as a wind turbine or a micro gas turbine. Furthermore, a PI closed-loop feedback voltage regulation scheme of the three-phase SEIG driven by a VSPM on the basis of the static VAR compensator (SVC) is designed and evaluated for the stand-alone AC and DC power applications. The simulation and experimental results prove the practical effectiveness of the additional SVC with the PI controller-based feedback loop in terms of its fast responses and high performances

Effective Algorithm in Steady-State Analysis for Variable-Speed and Constant-Speed Wind Turbine Coupled Three-Phase Self-Excited Induction Generator

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.139-146
    • /
    • 2003
  • In this paper, the steady-state operating performance analysis for the three-phase squirrel cage rotor self-excited induction generator (SEIG) driven by a variable-speed prime mover (VSPM) in addition to a constant-speed prime mover (CSPM) is presented on the basis of an effective algorithm based on its frequency-domain equivalent circuit. The operating characteristics of the three-phase SEIG coupled by a VSPM and/or a CSPM are evaluated on line processing under the condition of the electrical passive load parameters variations with simple and efficient computation processing procedure in unregulated voltage control loop scheme. A three-phase SEIG prototype setup with a VSPM as well as a CSPM is implemented for the small-scale clean renewable and alternative energy utilizations. The experimental operating characteristic results are illustrated and give good agreements with the simulation ones.