• 제목/요약/키워드: Caffe

검색결과 25건 처리시간 0.024초

Caffe Bene: Creating Values for Customers

  • Ahn, Kwangho;Yoo, Changjo;Kim, Youngchan
    • Asia Marketing Journal
    • /
    • 제14권3호
    • /
    • pp.185-197
    • /
    • 2012
  • Caffe Bene, one of the most notable coffeehouse chain brands in Republic of Korea, gives us some thought-provoking issues in terms of sustainable success. Despite harsh competition among various coffeehouse brands, Caffe Bene has been accomplished astonishing outcomes in domestic market and now ranked 2nd place in sales among the global coffeehouse franchise in 2010 and 2011. These achievements were possible mainly because Caffe Bene adopted distinctive shop design, maintained aggressive marketing strategy, developed new menu, and combined the unique Korean culture with ordinary concept of café to make its place attractive. However, since Korean coffeehouse market is getting saturated and consumers are becoming savvy about coffee, Caffe Bene needs to find a new solution to overcome growth stagnation. Besides, many experts pointed out that irrational increase in the number of stores might hurt its business in the aspect of managing distribution channel and providing consistent services. Also, customers of Caffe Bene have shown that it has to complement its critical weaknesses: inferior coffee taste and relatively high price for a cup of coffee. Especially, some people view that the company is shifting its high rental fee, interior cost and PPL marketing cost to consumers by charging high price for coffee. To get over the problems, Caffe Bene is currently using C/S Consumer Management System though experts are questioning about the efficacy because of the conflict between purpose of the system and the headquarters' plan. Present CEO Kim also announced that the company will complete its logistics system in the latter half of 2012 to provide stores with more high quality coffee beans to improve taste of coffee. Thus, in this case, we describe how Caffe Bene succeeded in Korean market and enumerate its key success factors. Also, we specify the long-term goals of Caffe Bene and introduce the current policies and strategies to show how the company is working on to achieve its ultimate goal. By reading and analyzing this business case, students could get useful insights regarding franchise management and think about issues on competing in a saturated market. Also, it would be worthwhile to generate creative solutions for the problems that Caffe Bene is now facing to broaden the practical perspective.

  • PDF

CAFFE 모델을 이용한 수량 측정 및 스테레오 비전을 이용한 거리 및 너비측정 (Quantity Measurement by CAFFE Model and Distance and Width Measurement by Stereo Vision)

  • 손원섭;김응곤
    • 한국전자통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.679-684
    • /
    • 2019
  • CAFFE 모델을 이용하여 클래스의 특정 종의 수량 측정하는 방법과 스테레오 비전을 이용하여 물체의 길이와 너비를 측정하는 방법을 제안한다. 물체의 너비를 구하는 방법은 좌측 센서와 우측 센서의 대상의 좌표 값을 비교하여 센서부터 물체까지의 거리를 계산한다. 그 후 거리와 영상 속의 대상의 길이를 구해 물체의 실제 길이의 근사 값을 계산한다.

대규모 신경회로망 분산 GPU 기계 학습을 위한 Caffe 확장 (Extending Caffe for Machine Learning of Large Neural Networks Distributed on GPUs)

  • 오종수;이동호
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제7권4호
    • /
    • pp.99-102
    • /
    • 2018
  • Caffe는 학술 연구용으로 널리 사용되는 신경회로망 학습 소프트웨어이다. 신경회로망 구조 결정에서 가장 중요한 요소에 GPU 기억 용량이 포함된다. 예를 들어 많은 객체 검출 소프트웨어는 신경회로망이 12GB 이하의 기억 용량을 사용하게 하여 하나의 GPU에 적합하게 설계되어 있다. 본 논문에서는 큰 신경회로망을 두 개 이상의 GPU에 분산 저장하여 12GB 이상의 기억 용량을 사용할 수 있게 Caffe를 확장하였다. 확장된 소프트웨어를 검증하기 위하여 3개 GPU를 가진 PC에서 최신 객체 검출 소프트웨어의 배치 크기에 따른 학습 효율을 실험하였다.

Caffe를 이용한 얼굴 인식 파이프라인 모델 구현 (Implementation of Face Recognition Pipeline Model using Caffe)

  • 박진환;김창복
    • 한국항행학회논문지
    • /
    • 제24권5호
    • /
    • pp.430-437
    • /
    • 2020
  • 제안 모델은 얼굴 검출과 랜드마크 및 얼굴 인식 알고리즘을 이용하여 인공신경망으로 학습을 통해 얼굴 예측률과 인식률을 향상하는 모델을 구현하였다. 제안 모델은 특정 인물의 얼굴 영상에서 랜드마킹을 한 후, 기존에 학습된 Caffe 모델을 이용하여 얼굴검출과 임베딩 벡터 128D를 추출하였다. 학습은 기계학습 알고리즘인 SVM (support vector machine)과 DNN (deep neural network)을 구축하여 학습하였다. 얼굴인식은 학습된 모델을 이용하여 학습된 인물 중 다른 얼굴 영상으로 테스트하였다. 실험 결과, SVM 보다는 DNN으로 학습한 결과가 우수한 예측률과 인식률을 보였다. DNN의 중간층을 증가하게 되면 예측률은 높아지나 인식률이 감소하는 현상이 발생하였다. 이것은 인식하고자 하는 대상이 적음으로써 발생하는 과적합으로 판단된다. 제안 모델은 명확한 얼굴 영상을 추가하여 학습한 결과, 높은 예측률과 인식률의 결과를 얻을 수 있음을 확인할 수 있었다. 본 연구는 좀 더 많은 얼굴 영상 데이터를 이용함으로써 보다 효과적인 딥러닝 구축을 통해 보다 향상된 인식률과 예측률을 얻을 수 있을 것이다.

딥 residual network를 이용한 선생-학생 프레임워크에서 힌트-KD 학습 성능 분석 (Performance Analysis of Hint-KD Training Approach for the Teacher-Student Framework Using Deep Residual Networks)

  • 배지훈;임준호;유재학;김귀훈;김준모
    • 전자공학회논문지
    • /
    • 제54권5호
    • /
    • pp.35-41
    • /
    • 2017
  • 본 논문에서는 지식추출(knowledge distillation) 및 지식전달(knowledge transfer)을 위하여 최근에 소개된 선생-학생 프레임워크 기반의 힌트(Hint)-knowledge distillation(KD) 학습기법에 대한 성능을 분석한다. 본 논문에서 고려하는 선생-학생 프레임워크는 현재 최신 딥러닝 모델로 각광받고 있는 딥 residual 네트워크를 이용한다. 따라서, 전 세계적으로 널리 사용되고 있는 오픈 딥러닝 프레임워크인 Caffe를 이용하여 학생모델의 인식 정확도 관점에서 힌트-KD 학습 시 선생모델의 완화상수기반의 KD 정보 비중에 대한 영향을 살펴본다. 본 논문의 연구결과에 따르면 KD 정보 비중을 단조감소하는 경우보다 초기에 설정된 고정된 값으로 유지하는 것이 학생모델의 인식 정확도가 더 향상된다는 것을 알 수 있었다.

신세대 특성의 지향과 의류광고 관여 유형에 대한 유행의사선도자와 추종자 집단간 차이 (Differences between Fashion Opinion Leaders and Followers in the Characteristics oriented New Young Generation and the Types of Fashion Advertising Involvement)

  • 홍희숙
    • 대한가정학회지
    • /
    • 제35권3호
    • /
    • pp.63-75
    • /
    • 1997
  • The purposes of this study was to identify the differences between fashion opinion leaders and followers in the characteristics oriented New Young Generation and the types of fashion advertising involvement. The data were collected via a questionnaire from 431 college students(female=218 male=213) living in Seoul, Korea and analyzed by factor analysis and t-test. The results of this study were as follows: First, eight factors of the characteristics oriented New Young Generation were identified: Fashion, individuality, preference of caffe with affective mood, expression of emotion, indivisualism, preference of tastes oriented Western Europe, activity of pan club and chatting by personal computer. The significant differences between fashion opinion leaders and followers in fashion, individuality, preferences of the caffe with affetive mood, and expression of emotion were found in the data collected from female. There were significant differences between fashion opinion leaders and followers in fashion, individuality in the data collected from male. Second, three factors of fashion involvement advertising were identified: The hedonic involvement, social involvement, utilitarian involvement. The significant differences between fashion opinion leaders and followers in the hedonic involvement, social involvement, utilitarian involvement and the levels of involvement were found in the case of female's data. There were significant differences between fashion opinion leaders and followers in the hedonic involvement, social involvement and levels of involvement except for utilitarian involvement in the case of male's data.

  • PDF

통합메모리를 이용한 임베디드 환경에서의 딥러닝 프레임워크 성능 개선과 평가 (Performance Enhancement and Evaluation of a Deep Learning Framework on Embedded Systems using Unified Memory)

  • 이민학;강우철
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권7호
    • /
    • pp.417-423
    • /
    • 2017
  • 최근, 딥러닝을 사용 가능한 임베디드 디바이스가 상용화됨에 따라 임베디드 시스템 영역에서도 딥러닝 활용에 대한 다양한 연구가 진행되고 있다. 그러나 임베디드 시스템을 고성능 PC 환경과 비교하면 상대적으로 저사양의 CPU/GPU 프로세서와 메모리를 탑재하고 있으므로 딥러닝 기술의 적용에 있어서 많은 제약이 있다. 본 논문에서는 다양한 최신 딥러닝 네트워크들을 임베디드 디바이스에 적용했을때의 성능을 시간과 전력이라는 관점에서 실험적으로 평가한다. 또한, 호스트 CPU와 GPU 디바이스간의 메모리를 공유하는 임베디드 시스템들의 아키텍처적인 특성을 이용하여 메모리 복사를 줄임으로써 실시간 성능과 저전력성을 높이는 방법을 제시한다. 제안된 방법은 대표적인 공개 딥러닝 프레임워크인 Caffe를 수정하여 구현되었으며, 임베디드 GPU를 탑재한 NVIDIA Jetson TK1에서 성능평가 되었다. 실험결과, 대부분의 딥러닝 네트워크에서 뚜렷한 성능향상을 관찰할 수 있었다. 특히, 메모리 사용량이 높은 AlexNet에서 약 33%의 이미지 인식 속도 단축과 50%의 소비 전력량 감소를 관찰할 수 있었다.

Evaluation of Recurrent Neural Network Variants for Person Re-identification

  • Le, Cuong Vo;Tuan, Nghia Nguyen;Hong, Quan Nguyen;Lee, Hyuk-Jae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권3호
    • /
    • pp.193-199
    • /
    • 2017
  • Instead of using only spatial features from a single frame for person re-identification, a combination of spatial and temporal factors boosts the performance of the system. A recurrent neural network (RNN) shows its effectiveness in generating highly discriminative sequence-level human representations. In this work, we implement RNN, three Long Short Term Memory (LSTM) network variants, and Gated Recurrent Unit (GRU) on Caffe deep learning framework, and we then conduct experiments to compare performance in terms of size and accuracy for person re-identification. We propose using GRU for the optimized choice as the experimental results show that the GRU achieves the highest accuracy despite having fewer parameters than the others.

딥 뉴럴 네트워크 지원을 위한 뉴로모픽 소프트웨어 플랫폼 기술 동향 (Trends in Neuromorphic Software Platform for Deep Neural Network)

  • 유미선;하영목;김태호
    • 전자통신동향분석
    • /
    • 제33권4호
    • /
    • pp.14-22
    • /
    • 2018
  • Deep neural networks (DNNs) are widely used in various domains such as speech and image recognition. DNN software frameworks such as Tensorflow and Caffe contributed to the popularity of DNN because of their easy programming environment. In addition, many companies are developing neuromorphic processing units (NPU) such as Tensor Processing Units (TPUs) and Graphical Processing Units (GPUs) to improve the performance of DNN processing. However, there is a large gap between NPUs and DNN software frameworks due to the lack of framework support for various NPUs. A bridge for the gap is a DNN software platform including DNN optimized compilers and DNN libraries. In this paper, we review the technical trends of DNN software platforms.