Caffe Bene, one of the most notable coffeehouse chain brands in Republic of Korea, gives us some thought-provoking issues in terms of sustainable success. Despite harsh competition among various coffeehouse brands, Caffe Bene has been accomplished astonishing outcomes in domestic market and now ranked 2nd place in sales among the global coffeehouse franchise in 2010 and 2011. These achievements were possible mainly because Caffe Bene adopted distinctive shop design, maintained aggressive marketing strategy, developed new menu, and combined the unique Korean culture with ordinary concept of café to make its place attractive. However, since Korean coffeehouse market is getting saturated and consumers are becoming savvy about coffee, Caffe Bene needs to find a new solution to overcome growth stagnation. Besides, many experts pointed out that irrational increase in the number of stores might hurt its business in the aspect of managing distribution channel and providing consistent services. Also, customers of Caffe Bene have shown that it has to complement its critical weaknesses: inferior coffee taste and relatively high price for a cup of coffee. Especially, some people view that the company is shifting its high rental fee, interior cost and PPL marketing cost to consumers by charging high price for coffee. To get over the problems, Caffe Bene is currently using C/S Consumer Management System though experts are questioning about the efficacy because of the conflict between purpose of the system and the headquarters' plan. Present CEO Kim also announced that the company will complete its logistics system in the latter half of 2012 to provide stores with more high quality coffee beans to improve taste of coffee. Thus, in this case, we describe how Caffe Bene succeeded in Korean market and enumerate its key success factors. Also, we specify the long-term goals of Caffe Bene and introduce the current policies and strategies to show how the company is working on to achieve its ultimate goal. By reading and analyzing this business case, students could get useful insights regarding franchise management and think about issues on competing in a saturated market. Also, it would be worthwhile to generate creative solutions for the problems that Caffe Bene is now facing to broaden the practical perspective.
CAFFE 모델을 이용하여 클래스의 특정 종의 수량 측정하는 방법과 스테레오 비전을 이용하여 물체의 길이와 너비를 측정하는 방법을 제안한다. 물체의 너비를 구하는 방법은 좌측 센서와 우측 센서의 대상의 좌표 값을 비교하여 센서부터 물체까지의 거리를 계산한다. 그 후 거리와 영상 속의 대상의 길이를 구해 물체의 실제 길이의 근사 값을 계산한다.
Caffe는 학술 연구용으로 널리 사용되는 신경회로망 학습 소프트웨어이다. 신경회로망 구조 결정에서 가장 중요한 요소에 GPU 기억 용량이 포함된다. 예를 들어 많은 객체 검출 소프트웨어는 신경회로망이 12GB 이하의 기억 용량을 사용하게 하여 하나의 GPU에 적합하게 설계되어 있다. 본 논문에서는 큰 신경회로망을 두 개 이상의 GPU에 분산 저장하여 12GB 이상의 기억 용량을 사용할 수 있게 Caffe를 확장하였다. 확장된 소프트웨어를 검증하기 위하여 3개 GPU를 가진 PC에서 최신 객체 검출 소프트웨어의 배치 크기에 따른 학습 효율을 실험하였다.
제안 모델은 얼굴 검출과 랜드마크 및 얼굴 인식 알고리즘을 이용하여 인공신경망으로 학습을 통해 얼굴 예측률과 인식률을 향상하는 모델을 구현하였다. 제안 모델은 특정 인물의 얼굴 영상에서 랜드마킹을 한 후, 기존에 학습된 Caffe 모델을 이용하여 얼굴검출과 임베딩 벡터 128D를 추출하였다. 학습은 기계학습 알고리즘인 SVM (support vector machine)과 DNN (deep neural network)을 구축하여 학습하였다. 얼굴인식은 학습된 모델을 이용하여 학습된 인물 중 다른 얼굴 영상으로 테스트하였다. 실험 결과, SVM 보다는 DNN으로 학습한 결과가 우수한 예측률과 인식률을 보였다. DNN의 중간층을 증가하게 되면 예측률은 높아지나 인식률이 감소하는 현상이 발생하였다. 이것은 인식하고자 하는 대상이 적음으로써 발생하는 과적합으로 판단된다. 제안 모델은 명확한 얼굴 영상을 추가하여 학습한 결과, 높은 예측률과 인식률의 결과를 얻을 수 있음을 확인할 수 있었다. 본 연구는 좀 더 많은 얼굴 영상 데이터를 이용함으로써 보다 효과적인 딥러닝 구축을 통해 보다 향상된 인식률과 예측률을 얻을 수 있을 것이다.
본 논문에서는 지식추출(knowledge distillation) 및 지식전달(knowledge transfer)을 위하여 최근에 소개된 선생-학생 프레임워크 기반의 힌트(Hint)-knowledge distillation(KD) 학습기법에 대한 성능을 분석한다. 본 논문에서 고려하는 선생-학생 프레임워크는 현재 최신 딥러닝 모델로 각광받고 있는 딥 residual 네트워크를 이용한다. 따라서, 전 세계적으로 널리 사용되고 있는 오픈 딥러닝 프레임워크인 Caffe를 이용하여 학생모델의 인식 정확도 관점에서 힌트-KD 학습 시 선생모델의 완화상수기반의 KD 정보 비중에 대한 영향을 살펴본다. 본 논문의 연구결과에 따르면 KD 정보 비중을 단조감소하는 경우보다 초기에 설정된 고정된 값으로 유지하는 것이 학생모델의 인식 정확도가 더 향상된다는 것을 알 수 있었다.
The purposes of this study was to identify the differences between fashion opinion leaders and followers in the characteristics oriented New Young Generation and the types of fashion advertising involvement. The data were collected via a questionnaire from 431 college students(female=218 male=213) living in Seoul, Korea and analyzed by factor analysis and t-test. The results of this study were as follows: First, eight factors of the characteristics oriented New Young Generation were identified: Fashion, individuality, preference of caffe with affective mood, expression of emotion, indivisualism, preference of tastes oriented Western Europe, activity of pan club and chatting by personal computer. The significant differences between fashion opinion leaders and followers in fashion, individuality, preferences of the caffe with affetive mood, and expression of emotion were found in the data collected from female. There were significant differences between fashion opinion leaders and followers in fashion, individuality in the data collected from male. Second, three factors of fashion involvement advertising were identified: The hedonic involvement, social involvement, utilitarian involvement. The significant differences between fashion opinion leaders and followers in the hedonic involvement, social involvement, utilitarian involvement and the levels of involvement were found in the case of female's data. There were significant differences between fashion opinion leaders and followers in the hedonic involvement, social involvement and levels of involvement except for utilitarian involvement in the case of male's data.
최근, 딥러닝을 사용 가능한 임베디드 디바이스가 상용화됨에 따라 임베디드 시스템 영역에서도 딥러닝 활용에 대한 다양한 연구가 진행되고 있다. 그러나 임베디드 시스템을 고성능 PC 환경과 비교하면 상대적으로 저사양의 CPU/GPU 프로세서와 메모리를 탑재하고 있으므로 딥러닝 기술의 적용에 있어서 많은 제약이 있다. 본 논문에서는 다양한 최신 딥러닝 네트워크들을 임베디드 디바이스에 적용했을때의 성능을 시간과 전력이라는 관점에서 실험적으로 평가한다. 또한, 호스트 CPU와 GPU 디바이스간의 메모리를 공유하는 임베디드 시스템들의 아키텍처적인 특성을 이용하여 메모리 복사를 줄임으로써 실시간 성능과 저전력성을 높이는 방법을 제시한다. 제안된 방법은 대표적인 공개 딥러닝 프레임워크인 Caffe를 수정하여 구현되었으며, 임베디드 GPU를 탑재한 NVIDIA Jetson TK1에서 성능평가 되었다. 실험결과, 대부분의 딥러닝 네트워크에서 뚜렷한 성능향상을 관찰할 수 있었다. 특히, 메모리 사용량이 높은 AlexNet에서 약 33%의 이미지 인식 속도 단축과 50%의 소비 전력량 감소를 관찰할 수 있었다.
Le, Cuong Vo;Tuan, Nghia Nguyen;Hong, Quan Nguyen;Lee, Hyuk-Jae
IEIE Transactions on Smart Processing and Computing
/
제6권3호
/
pp.193-199
/
2017
Instead of using only spatial features from a single frame for person re-identification, a combination of spatial and temporal factors boosts the performance of the system. A recurrent neural network (RNN) shows its effectiveness in generating highly discriminative sequence-level human representations. In this work, we implement RNN, three Long Short Term Memory (LSTM) network variants, and Gated Recurrent Unit (GRU) on Caffe deep learning framework, and we then conduct experiments to compare performance in terms of size and accuracy for person re-identification. We propose using GRU for the optimized choice as the experimental results show that the GRU achieves the highest accuracy despite having fewer parameters than the others.
Deep neural networks (DNNs) are widely used in various domains such as speech and image recognition. DNN software frameworks such as Tensorflow and Caffe contributed to the popularity of DNN because of their easy programming environment. In addition, many companies are developing neuromorphic processing units (NPU) such as Tensor Processing Units (TPUs) and Graphical Processing Units (GPUs) to improve the performance of DNN processing. However, there is a large gap between NPUs and DNN software frameworks due to the lack of framework support for various NPUs. A bridge for the gap is a DNN software platform including DNN optimized compilers and DNN libraries. In this paper, we review the technical trends of DNN software platforms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.