References
- J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, "Large scale distributed deep networks," Advances in Neural Information Processing Systems 25, pp.1223-1231, 2012.
- F. Niu, B. Retcht, C. Re, and S. J. Wright. "Hogwild!: A lock-free approach to parallelizing stochastic gradient descent," Advances in Neural Information Processing Systems 24, pp.693-701, 2011.
- J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, "Revisiting distributed synchronous SGD," The 4th International Conference on Learning Representations: Workshop Track, arXiv eprint arXiv:1604.00981, 2016.
- Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, "Caffe: Convolutional architecture for fast feature embedding," Proceedings of the 22nd ACM International Conference on Multimedia, pp.675-678, 2014.
- S. Hadjis, F. Abuzaid, C. Zhang, and C. Re, "Caffe con Troll: Shallow ideas to speed up deep learning," Proceedings of the 4th Workshop on Data analytics in the Cloud, pp.2:1-2:4, 2015.
- P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He, "Accurate, large minibatch SGD: Training ImageNet in 1 hour," arXiv eprint arXiv:1706.02677, 2017.
- Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, "A unified multi-scale deep convolutional neural network for fast object detection," Computer Vision - ECCV 2016: Part IV, Vol.9908 of Lecture Notes in Computer Science, pp.354-370, 2016.
- S. Ioffe, "Batch renormalization: Towards reducing minibatch dependence in batch-normalized models," arXiv eprint arXiv:1702.03275, 2017.
- S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object detection with region proposal networks," Advances in Neural Information Processing Systems 28, pp.91-99, 2015.
- A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, "Vision meets robotics: The KITTI dataset," The International Journal of Robotics Research, Vol.32, Issue 11, pp.1231-1237, 2013. https://doi.org/10.1177/0278364913491297
- S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer, "cuDNN: Efficient primitives for deep learning," The NIPS 2014 Deep Learning and Representation Learning Workshop, arXiv eprint arXiv:1410.0759, 2014.
- N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, P. T. P. Tang, "On large-batch training for deep learning: Generalization gap and sharp minima," The 5th International Conference on Learning Representations: Conference Track, arXiv eprint arXiv:1609.04836, 2017.
- J. Dai, Y. Li, K. He, and J. Sun, "R-FCN: Object detection via region-based fully convolutional networks," Advances in Neural Information Processing Systems 29, pp.379-387, 2016.
- A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing, "Deep kernel learning," Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, Vol.51 of Proceedings of Machine Learning Research, pp.370-378, 2016.