Caffe Bene, one of the most notable coffeehouse chain brands in Republic of Korea, gives us some thought-provoking issues in terms of sustainable success. Despite harsh competition among various coffeehouse brands, Caffe Bene has been accomplished astonishing outcomes in domestic market and now ranked 2nd place in sales among the global coffeehouse franchise in 2010 and 2011. These achievements were possible mainly because Caffe Bene adopted distinctive shop design, maintained aggressive marketing strategy, developed new menu, and combined the unique Korean culture with ordinary concept of café to make its place attractive. However, since Korean coffeehouse market is getting saturated and consumers are becoming savvy about coffee, Caffe Bene needs to find a new solution to overcome growth stagnation. Besides, many experts pointed out that irrational increase in the number of stores might hurt its business in the aspect of managing distribution channel and providing consistent services. Also, customers of Caffe Bene have shown that it has to complement its critical weaknesses: inferior coffee taste and relatively high price for a cup of coffee. Especially, some people view that the company is shifting its high rental fee, interior cost and PPL marketing cost to consumers by charging high price for coffee. To get over the problems, Caffe Bene is currently using C/S Consumer Management System though experts are questioning about the efficacy because of the conflict between purpose of the system and the headquarters' plan. Present CEO Kim also announced that the company will complete its logistics system in the latter half of 2012 to provide stores with more high quality coffee beans to improve taste of coffee. Thus, in this case, we describe how Caffe Bene succeeded in Korean market and enumerate its key success factors. Also, we specify the long-term goals of Caffe Bene and introduce the current policies and strategies to show how the company is working on to achieve its ultimate goal. By reading and analyzing this business case, students could get useful insights regarding franchise management and think about issues on competing in a saturated market. Also, it would be worthwhile to generate creative solutions for the problems that Caffe Bene is now facing to broaden the practical perspective.
The Journal of the Korea institute of electronic communication sciences
/
v.14
no.4
/
pp.679-684
/
2019
We propose a method to measure the number of specific species of class using CAFFE model and a method to measure length and width of object using stereo vision. To obtain the width of an object, the location coordinates of objects appearing on the left and right sensor is compared and the distance from the sensor to the object is obtained. Then the length of the object in the image by using the distance and the approximate value of the actual length of the object is calculated.
KIPS Transactions on Computer and Communication Systems
/
v.7
no.4
/
pp.99-102
/
2018
Caffe is a neural net learning software which is widely used in academic researches. The GPU memory capacity is one of the most important aspects of designing neural net architectures. For example, many object detection systems require to use less than 12GB to fit a single GPU. In this paper, we extended Caffe to allow to use more than 12GB GPU memory. To verify the effectiveness of the extended software, we executed some training experiments to determine the learning efficiency of the object detection neural net software using a PC with three GPUs.
The proposed model implements a model that improves the face prediction rate and recognition rate through learning with an artificial neural network using face detection, landmark and face recognition algorithms. After landmarking in the face images of a specific person, the proposed model use the previously learned Caffe model to extract face detection and embedding vector 128D. The learning is learned by building machine learning algorithms such as support vector machine (SVM) and deep neural network (DNN). Face recognition is tested with a face image different from the learned figure using the learned model. As a result of the experiment, the result of learning with DNN rather than SVM showed better prediction rate and recognition rate. However, when the hidden layer of DNN is increased, the prediction rate increases but the recognition rate decreases. This is judged as overfitting caused by a small number of objects to be recognized. As a result of learning by adding a clear face image to the proposed model, it is confirmed that the result of high prediction rate and recognition rate can be obtained. This research will be able to obtain better recognition and prediction rates through effective deep learning establishment by utilizing more face image data.
Journal of the Institute of Electronics and Information Engineers
/
v.54
no.5
/
pp.35-41
/
2017
In this paper, we analyze the performance of the recently introduced Hint-knowledge distillation (KD) training approach based on the teacher-student framework for knowledge distillation and knowledge transfer. As a deep neural network (DNN) considered in this paper, the deep residual network (ResNet), which is currently regarded as the latest DNN, is used for the teacher-student framework. Therefore, when implementing the Hint-KD training, we investigate the impact on the weight of KD information based on the soften factor in terms of classification accuracy using the widely used open deep learning frameworks, Caffe. As a results, it can be seen that the recognition accuracy of the student model is improved when the fixed value of the KD information is maintained rather than the gradual decrease of the KD information during training.
The purposes of this study was to identify the differences between fashion opinion leaders and followers in the characteristics oriented New Young Generation and the types of fashion advertising involvement. The data were collected via a questionnaire from 431 college students(female=218 male=213) living in Seoul, Korea and analyzed by factor analysis and t-test. The results of this study were as follows: First, eight factors of the characteristics oriented New Young Generation were identified: Fashion, individuality, preference of caffe with affective mood, expression of emotion, indivisualism, preference of tastes oriented Western Europe, activity of pan club and chatting by personal computer. The significant differences between fashion opinion leaders and followers in fashion, individuality, preferences of the caffe with affetive mood, and expression of emotion were found in the data collected from female. There were significant differences between fashion opinion leaders and followers in fashion, individuality in the data collected from male. Second, three factors of fashion involvement advertising were identified: The hedonic involvement, social involvement, utilitarian involvement. The significant differences between fashion opinion leaders and followers in the hedonic involvement, social involvement, utilitarian involvement and the levels of involvement were found in the case of female's data. There were significant differences between fashion opinion leaders and followers in the hedonic involvement, social involvement and levels of involvement except for utilitarian involvement in the case of male's data.
Recently, many embedded devices that have the computing capability required for deep learning have become available; hence, many new applications using these devices are emerging. However, these embedded devices have an architecture different from that of PCs and high-performance servers. In this paper, we propose a method that improves the performance of deep-learning framework by considering the architecture of an embedded device that shares memory between the CPU and the GPU. The proposed method is implemented in Caffe, an open-source deep-learning framework, and is evaluated on an NVIDIA Jetson TK1 embedded device. In the experiment, we investigate the image recognition performance of several state-of-the-art deep-learning networks, including AlexNet, VGGNet, and GoogLeNet. Our results show that the proposed method can achieve significant performance gain. For instance, in AlexNet, we could reduce image recognition latency by about 33% and energy consumption by about 50%.
Le, Cuong Vo;Tuan, Nghia Nguyen;Hong, Quan Nguyen;Lee, Hyuk-Jae
IEIE Transactions on Smart Processing and Computing
/
v.6
no.3
/
pp.193-199
/
2017
Instead of using only spatial features from a single frame for person re-identification, a combination of spatial and temporal factors boosts the performance of the system. A recurrent neural network (RNN) shows its effectiveness in generating highly discriminative sequence-level human representations. In this work, we implement RNN, three Long Short Term Memory (LSTM) network variants, and Gated Recurrent Unit (GRU) on Caffe deep learning framework, and we then conduct experiments to compare performance in terms of size and accuracy for person re-identification. We propose using GRU for the optimized choice as the experimental results show that the GRU achieves the highest accuracy despite having fewer parameters than the others.
Deep neural networks (DNNs) are widely used in various domains such as speech and image recognition. DNN software frameworks such as Tensorflow and Caffe contributed to the popularity of DNN because of their easy programming environment. In addition, many companies are developing neuromorphic processing units (NPU) such as Tensor Processing Units (TPUs) and Graphical Processing Units (GPUs) to improve the performance of DNN processing. However, there is a large gap between NPUs and DNN software frameworks due to the lack of framework support for various NPUs. A bridge for the gap is a DNN software platform including DNN optimized compilers and DNN libraries. In this paper, we review the technical trends of DNN software platforms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.