• Title/Summary/Keyword: Cadmium sulfide

Search Result 65, Processing Time 0.018 seconds

Effect of Surface Treatment on Hydrogen Production of Cadmium Sulfide Particulate Film Electrodes (수소제조용 CdS 입자막 전극의 표면처리 효과)

  • Jang, Jum-Suk;Chang, Hye-Young;So, Won-Wook;Rhee, Young-Woo;Moon, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.3
    • /
    • pp.119-125
    • /
    • 2000
  • To improve the photochemical energy conversion efficiency and the stability of CdS particulate film electrode which is used to produce hydrogen from the aqueous $H_2S$ solution photoelectrochemically, surface treatment of this film was carried out using $TiCl_4$ solution. CdS particles for preparation of the films were synthesized by precipitation reaction of $Cd({NO_3})_2{\cdot}9H_2O$ and $Na_2S{\cdot}4H_2O$. Then, the CdS sol was hydrothermally treated for 12hr in an autoclave with the variation of treatment temperature to control the crystalline phase of particles. CdS film electrode was thus prepared by annealing at $400^{\circ}C$ for 12hr of the wet-film cast at room temperature, and subsequently surface treated with $TiCl_4$ solution. The electrodes were characterized using XRD, SEM, and the photocurrent meter. The photocurrents of Cds film electrodes prepared with surface treatment were up to two times higher than the electrodes without surface treatment, indicating about $4.0mA/cm^2$. Hydrogen production rate in a continuous flow system using photoelectrochemical or photochemical cells prepared with surface treatment also increased in proportion to the increase of photocurrents.

  • PDF

CdS-Titania-Nanotube Composite Films for Photocatalytic Hydrogen Production (CdS/Titania-나노튜브 복합 막을 이용한 광촉매적 수소제조)

  • Lee, Hyun-Mi;So, Won-Wook;Baeg, Jin-Ook;Kong, Ki-Jeong;Moon, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.230-237
    • /
    • 2007
  • Titania nanotube(TiNT) and CdS sol were synthesized by hydrothermal reaction under strongly basic condition and by precipitation reaction of $Cd(N0_3)_2$ and $Na_2S$ aqueous solutions, respectively. After preparing a series of CdS-TiNT composite films on $F:SnO_2$ conducting glass with variation of the mole ratio (r) of TiNT/(CdS+TiNT), their visible light absorption, photocatalytic activities for hydrogen production, and the photocurrent generation were examined. In general, this CdS-TiNT series showed lower photocatalytic activities and photocurrent generation under Xe light irradiation compared to their counterparts, i.e., CdS-$TiO_2$ particulate series. It appeared that TiNTs are not so effective photocatalyic material in spite of their larger specific surface areas compared to $TiO_2$ nanoparticles, because they indicate a poor crystallinity and less intimate interaction or contact with CdS particles owing to the tubular morphology and an easy agglomeration among themselves.

A Geochemical Study on the Dispersion of Heavy Metal Elements in Dusts and Soils in Urban and Industrial Environments (도시 및 산업환경 분진 및 토양중의 중금속 원소들의 분산에 관한 지구화학적 연구)

  • Chon, Hyo-Taek;Choi, Wan-Joo
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.317-336
    • /
    • 1992
  • The garden soils, main road dusts, residential road dusts, and playground soils/dusts of Seoul, Geumsan, Onsan, and Taebaek areas were analyzed in order to investigate the level of heavy metal pollution by urbanization and industrialization. The soil pH is in the range of 5.48~8.40 and was generally neutral. The color of soils and dusts is mainly Raw Umber to dark greyish Raw Umber. Some samples from Taebaek city, a coal mining area, showed a deep black color due to contamination by coal dusts. Major minerals of the dusts and soils are quartz, feldspars, and micas, reflecting the composition of the parent rocks. However, pyrite was found as a major mineral in the samples of industrial road dusts of Onsan, a smelting area, and resicential road dusts of Taebaek. Thus, the high level of heavy metals in mining and smelting areas can be explained with the sulfide minerals. The mode of occurences of heavy metals in Seoul, a comprehensive urbanized area, were related to the metallic pollutants and organic materials through observation by scanning eletron microscopy. In main road and residential road dusts of Onsan area, Cd, Zn, and Cu were extremely high. Some industrial road and residential road dusts of Seoul area showed high Cu, Zn, and Pb contents, wereas some garden soils and residential road dusts of Taebaek area were high in As content. In general, the heavy metal contents in dust samples were two to three times higher than those in soil samples. Main road dust samples were the most reflective from the discriminant analysis of multi-element data. Cadmium, Sb, and Se in Onsan area, As in Taebaek area, Pb and Te in Seoul area were most characteristic in discriminating the studied areas. Therefore, Cd in smelting areas, As in coal mining areas, and Pb in metropolitan areas can be suggested as the characteristic elements of each pollution pattern. The dispersion of heavy metal elements in urban areas tends to orignate in main roads and deposit in garden soils through the atmosphere and residential roads. The heavy metal contamination in Seoul is characteristic in areas with high population, factory, road, and traffic decsities. Heavy metal contents are high in the vicinity of smelters in Onsan area and are decayed to background levels from one kilometer away from the smelters.

  • PDF

DISTRIBUTION OF SOME CHEMICAL POLLUTANTS IN SUYEONG BAY (수영만 인근해수의 오탁분포에 대하여)

  • WON Jong-Hun;LEE Bae-Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.2
    • /
    • pp.87-94
    • /
    • 1979
  • In order to study the water pollution in Suyeong Bay, Busan, some chemical constituents were determined at 25 stations in the neap tides on 9 Aug. 1977 and spring tides on 30 Aug. 1977. Range and mean values of the constituents in the spring tides are as follows: $pH\;6.54\~8.06,\;7.54;$ electrical conductivity $0.413\~0.481\times10^5\;\mu\mho/cm,\;0.467\times10^5\;\mu\mho/cm;\;transparency\;0.2\~5.5m,\;2.2m;$ turbidity $1\~60ppm$, 14ppm, chlorosity $15.20\~18.11g/\ell,\;17.67g/\ell;$ fluoride ion $0.94\~1.03ppm$, 0.99ppm; dissolved oxygen $0.17\~7.60ppm$, 4.77ppm; sulfide $0\~0.46ppm$, 0.07ppm; chemical oxygen demand $1.20\~40.74ppm$, 6.11ppm; ammonia-nitrogen $0.060\~0.520ppm$, 0.180ppm; nitrite-nitrogen $0.001\~0.026ppm$, 0.009ppm; nitrate-nitrogen $0\~0.037ppm$, 0.014ppm; phosphate-phosphorus $0.002\~0.261ppm$, 0.050ppm; n-Hexane soluble $0.5\~5.4ppm$, 2.1ppm ; iron $1.0\~104.11\;ppb$, 24.15ppb ; copper $0\~27.45ppb$, 4.19ppb; lead $0\~2.50ppb$, 0.92ppb; zinc $0\~5.15ppb$, 1.47ppb ; cadmium $0\~0.26ppb$, 0.04ppb; and mercury $0.05\~0.37ppb$, 0.11ppb respectively. The variations of the contents of the chemical constituents in the spring tides were larger than in the neap tides. The contents of COD, sulfide, nutrient salts and heavy metals were the highest in the estuary of Suyeong River, and decreased in order of off Kwangan-Ri region, outer Bay and off Haeun-Dae region. The water quality in Suyeong Bay was particularly shown that the concentrations of COO, iron, copper and mercury were higher than those of other coastal aseas and deficiency in dissolved oxygen was observed in some parte of Suyeong Bay. In consideration of the relationship between the chlorosity and the concentrations of nutrient salts, COD and total heavy metals, water pollution of this area is considered due to the inflow of Suyeong River which was extremely polluted by sewage and industrial wastewaters.

  • PDF

Feasibility of Phytoremediation for Metal-Contaminated Abandoned Mining Area (광산 인근 토양의 중금속 오염에 따른 식물정화기술의 적용성 탐색)

  • Ok, Yong-Sik;Kim, Si-Hyun;Kim, Dae-Yeon;Lee, Han-na;Lim, Soo-Kil;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.323-332
    • /
    • 2003
  • This study was carried out to provide information for the present status of soil pollution near abandoned old-zinc mining area through analysis of bound form and 0.1 N-HCl extractable concentrations of heavy metals in soils and plants. Feasibility of endemic plants for phytoremediation was evaluated by the investigation of vegetation in soils. Cd contents of the selected samples near old-zinc mining soils ranged from 0.2 to $42mg\;kg^{-1}$. Nonagricultural soils near the mining area contained great amounts of Zn, Pb, Cd, and Cu than the paddy and upland soils. Some Korean wild plants, Artemisia princeps, Artemisia montana, Erigeron canadensis, and Pueraria thunbergiana, were found to grow vigorously in the studied area. Among them, Artemisia princeps was selected as a possible phytoremediator for cleaning heavy metal contaminated soils. Artemisia princeps contained about 43 and $52mg\;kg^{-1}$ of Cd in their root and shoot as dry weight, respectively. Average contents of Cd in the rhizosphere soil, $15.68mg\;kg^{-1}$, was slightly higher than the soil-root interface soils, $14.1mg\;kg^{-1}$. Sequential extraction of Cd contaminated soils showed that average $2.4mg\;kg^{-1}$ (about 7%) of cadmium existed as exchangeable form and the average amounts increased as follows : adsorbed < organically bound < exchangeable << oxide carbonate << sulfide residual fractions. Amendment of organic by-product fertilizer in metal-contaminated soils promoted the growth of roots significantly as compared with the other treatments containing chemical fertilizer.